
Behnaz Hatamluyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical, 2020, 318, 128219.	7.8	121
2	Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 12-19.	2.8	78
3	Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosensors and Bioelectronics, 2018, 120, 22-29.	10.1	63
4	A novel molecularly imprinted polymer decorated by CQDs@HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sensors and Actuators B: Chemical, 2020, 307, 127614.	7.8	53
5	A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. Journal of Electroanalytical Chemistry, 2017, 801, 439-449.	3.8	52
6	A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sensors and Actuators B: Chemical, 2019, 286, 540-549.	7.8	50
7	Electrochemical biosensing platform based on molecularly imprinted polymer reinforced by ZnO–graphene capped quantum dots for 6-mercaptopurine detection. Electrochimica Acta, 2018, 283, 1170-1177.	5.2	45
8	Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta, 2021, 226, 122099.	5.5	37
9	Improved solid phase extraction for selective and efficient quantification of sunset yellow in different food samples using a novel molecularly imprinted polymer reinforced by Fe3O4@UiO-66-NH2. Food Chemistry, 2021, 357, 129782.	8.2	36
10	Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosensors and Bioelectronics, 2022, 207, 114209.	10.1	30
11	Quantitative Biodetection of Anticancer Drug Rituxan with DNA Biosensor Modified PAMAM Dendrimer/Reduced Graphene Oxide Nanocomposite. Electroanalysis, 2018, 30, 1659-1668.	2.9	27
12	Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta, 2021, 234, 122662.	5.5	16
13	Carbon Quantum Dots Coâ€eatalyzed with ZnO Nanoflowers and Poly (CTAB) Nanosensor for Simultaneous Sensitive Detection of Paracetamol and Ciprofloxacin in Biological Samples. Electroanalysis, 2020, 32, 1818-1827.	2.9	14
14	PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchemical Journal, 2022, 179, 107467.	4.5	13
15	The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta, 2022, 238, 123049.	5.5	10
16	Nanotechnologyâ€driven advances in the treatment of diabetic wounds. Biotechnology and Applied Biochemistry, 2020, , .	3.1	7