
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructuring of Nb-Si-Cr Alloys by Electron Beam Melting to Improve the Mechanical Properties and the Oxidation Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 240-249.	2.2	1
2	Fatigue Life Optimized Layer Architecture of Ultrafineâ€Grained Al–Ti Laminates Under Bending Stresses. Advanced Engineering Materials, 2022, 24, .	3.5	2
3	Microcantilever Fracture Tests of α r Containing NiAl Bond Coats. Advanced Engineering Materials, 2022, 24, .	3.5	2
4	Resistance-curve envelopes for dental lithium disilicate glass-ceramics. Journal of the European Ceramic Society, 2022, 42, 2516-2522.	5.7	6
5	Quantification of the temperature-dependent evolution of defect structures in a CoNi-base superalloy. Acta Materialia, 2022, 227, 117702.	7.9	14
6	Creep properties and deformation mechanisms of single-crystalline <i>γ</i> ′-strengthened superalloys in dependence of the Co/Ni ratio. Philosophical Magazine, 2022, 102, 718-744.	1.6	3
7	Influence of Nb, Ta and Zr on the Interdiffusion Coefficients and Solid Solution Strengthening of Î ³ -TiAl Single Phase Alloys. Metals, 2022, 12, 752.	2.3	1
8	On the influence of Al-concentration on the fracture toughness of NiAl: Microcantilever fracture tests and atomistic simulations. Acta Materialia, 2022, 234, 117996.	7.9	4
9	The grain boundary hardness in austenitic stainless steels studied by nanoindentations. International Journal of Materials Research, 2022, 95, 492-498.	0.3	0
10	Understanding raft formation and precipitate shearing during double minimum creep in a γ′-strengthened single crystalline Co-base superalloy. Philosophical Magazine, 2021, 101, 326-353.	1.6	6
11	The temperature dependent lattice misfit of rhenium and ruthenium containing nickel-base superalloys – Experiment and modelling. Materials and Design, 2021, 198, 109362.	7.0	31
12	Breakdown of the superplastic deformation behavior of heterogeneous nanomaterials at small length scales. Materials Research Letters, 2021, 9, 41-49.	8.7	4
13	Applicability of focused Ion beam (FIB) milling with gallium, neon, and xenon to the fracture toughness characterization of gold thin films. Journal of Materials Research, 2021, 36, 2505-2514.	2.6	13
14	Microcantilever Fracture Tests on Eutectic NiAl–Cr(Mo) In Situ Composites. Advanced Engineering Materials, 2021, 23, 2001464.	3.5	9
15	Hierarchical and heterogeneous multiphase metallic nanomaterials and laminates. MRS Bulletin, 2021, 46, 236-243.	3.5	18
16	Ultrafineâ€Grained Laminated Metal Composites: A New Material Class for Tailoring Cyclically Stressed Components. Advanced Engineering Materials, 2021, 23, 2100070.	3.5	3
17	About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites. Materials, 2021, 14, 2564.	2.9	6
18	Partitioning Behavior of Nb, Ta, and Zr in Fully Lamellar γ/α ₂ Titanium Aluminides and Its Effect on the Lattice Misfit and Creep Behavior. Advanced Engineering Materials, 2021, 23, 2100156.	3.5	17

#	Article	IF	CITATIONS
19	Influence of small amounts of Si and Cr on the high temperature oxidation behavior of novel cobalt base superalloys. Corrosion Science, 2021, 184, 109388.	6.6	21
20	Temperatureâ€Dependent Dynamic Strain Aging in Selective Laser Melted 316L. Advanced Engineering Materials, 2021, 23, 2001501.	3.5	4
21	Design of a Co–Al–W–Ta Alloy Series with Varying γ′ Volume Fraction and Their Thermophysical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3931-3944.	2.2	11
22	Correlation Between Local Chemical Composition and Formation of Different Types of Ordered Phases in the Polycrystalline Nickelâ€Base Superalloy A718Plus. Advanced Engineering Materials, 2021, 23, 2100558.	3.5	6
23	A scale-bridging study of the influence of TCP phases on the mechanical properties of an additive manufactured Ni-base superalloy combining microcompression testing, X-ray nanotomography and TEM. Microscopy and Microanalysis, 2021, 27, 938-942.	0.4	Ο
24	Yielding behavior of a single-crystalline γ'-strengthened Co-Ti-Cr superalloy. Scripta Materialia, 2021, 200, 113928.	5.2	16
25	Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films?. Acta Materialia, 2021, 215, 117079.	7.9	18
26	Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy. Acta Materialia, 2021, 214, 117019.	7.9	23
27	Breaking the continuity of the Al2O3 oxide scale by additions of Cr in Co-Al-W-based superalloys. Corrosion Science, 2021, 189, 109594.	6.6	14
28	Rotating Scan Strategy Induced Anisotropic Microstructural and Mechanical Behavior of Selective Laser Melted Materials and Their Reduction by Heat Treatments. Advanced Engineering Materials, 2021, 23, 2100622.	3.5	9
29	Understanding the High Creep Resistance of MRI 230D Magnesium Alloy through Nanoindentation and Atom Probe Tomography. Metals, 2021, 11, 1727.	2.3	1
30	Solid Solution Strengthening of Mo, Re, Ta and W in Ni during High-Temperature Creep. Metals, 2021, 11, 1909.	2.3	3
31	Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 2020, 174, 19-23.	5.2	111
32	Deformation mechanisms and strain rate sensitivity of bimodal andÂultrafine-grained copper. Acta Materialia, 2020, 186, 363-373.	7.9	30
33	The influence of near service environmental conditions on the corrosion and LCF behaviour of a beta-stabilized Î ³ -TiAl alloy. Corrosion Science, 2020, 175, 108885.	6.6	4
34	Nanoscaled eutectic NiAl-(Cr,Mo) composites with exceptional mechanical properties processed by electron beam melting. Scientific Reports, 2020, 10, 15153.	3.3	10
35	The Importance of Diffusivity and Partitioning Behavior of Solid Solution Strengthening Elements for the High Temperature Creep Strength of Ni-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6195-6206.	2.2	23
36	Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 640-648.	4.9	27

#	Article	IF	CITATIONS
37	Combining Experiments and Atom Probe Tomographyâ€Informed Simulations on γ′ Precipitation Strengthening in the Polycrystalline Niâ€Base Superalloy A718Plus. Advanced Engineering Materials, 2020, 22, 2000149.	3.5	16
38	Revealing the local fatigue behavior of bimodal copper laminates by micropillar fatigue tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139502.	5.6	7
39	On the Precipitation-Strengthening Contribution of the Ta-Containing Co3(Al,W)-Phase to the Creep Properties of γ/γâ€2 Cobalt-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1567-1574.	2.2	20
40	Enhancing the High-Temperature Strength of a Co-Base Superalloy by Optimizing the γ/γ′ Microstructure. Metals, 2020, 10, 321.	2.3	15
41	The Role of Interfaces on the Deformation Mechanisms in Bimodal Al Laminates Produced by Accumulative Roll Bonding. Advanced Engineering Materials, 2020, 22, 2000145.	3.5	15
42	Local Mechanical Properties at the Dendrite Scale of Ni-Based Superalloys Studied by Advanced High Temperature Indentation Creep and Micropillar Compression Tests. Minerals, Metals and Materials Series, 2020, , 273-281.	0.4	0
43	High Lightweight Potential of Ultrafineâ€Grained Aluminum/Steel Laminated Metal Composites Produced by Accumulative Roll Bonding. Advanced Engineering Materials, 2019, 21, 1800286.	3.5	21
44	New flat-punch indentation creep testing approach for characterizing the local creep properties at high temperatures. Materials and Design, 2019, 183, 108090.	7.0	13
45	Influence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests. Metals, 2019, 9, 692.	2.3	3
46	Low temperature deformation of MoSi2 and the effect of Ta, Nb and Al as alloying elements. Acta Materialia, 2019, 181, 385-398.	7.9	16
47	Determination of the true projected contact area by in situ indentation testing. Journal of Materials Research, 2019, 34, 2859-2868.	2.6	7
48	Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films. Journal of Materials Research, 2019, 34, 3483-3494.	2.6	5
49	Microtensile creep testing of freestanding MCrAlY bond coats. Journal of Materials Research, 2019, 34, 2643-2652.	2.6	3
50	Impact of Mn on the precipitate structure and creep resistance of Ca containing magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 137964.	5.6	8
51	<i>In-situ</i> observation of dislocation dynamics near heterostructured interfaces. Materials Research Letters, 2019, 7, 376-382.	8.7	100
52	Fracture resistance of yttria stabilized zirconia manufactured from stabilizer-coated nanopowder by micro cantilever bending tests. Journal of the European Ceramic Society, 2019, 39, 3830-3836.	5.7	6
53	Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900â€ [−] °C. Corrosion Science, 2019, 156, 84-95.	6.6	35
54	In situ X-ray tomography investigation of the crack formation in an intermetallic beta-stabilized TiAl-alloy during a stepwise tensile loading. International Journal of Fatigue, 2019, 124, 138-148.	5.7	15

#	Article	IF	CITATIONS
55	A review of experimental approaches to fracture toughness evaluation at the micro-scale. Materials and Design, 2019, 173, 107762.	7.0	167
56	Superior Mechanical Properties of Aluminum–Titanium Laminates in Terms of Local Hardness and Strength. Advanced Engineering Materials, 2019, 21, 1800546.	3.5	8
57	Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Materialia, 2019, 166, 597-610.	7.9	48
58	The influence of niobium, tantalum and zirconium on the microstructure and creep strength of fully lamellar γ/α2 titanium aluminides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 46-53.	5.6	30
59	Optimisation of interface formation by shear inclination: Example of aluminium-copper hybrid produced by ECAP with back-pressure. Materials and Design, 2018, 146, 142-151.	7.0	11
60	The grain boundary pinning effect of the μ phase in an advanced polycrystalline γ/γ′ Co-base superalloy. Journal of Alloys and Compounds, 2018, 753, 333-342.	5.5	27
61	On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys. Acta Materialia, 2018, 145, 247-254.	7.9	73
62	Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 2018, 21, 713-719.	14.2	357
63	Dynamic mechanical characterization of poly(glycerol sebacate)/poly(butylene succinate-butylene) Tj ETQq1 1 0 2018, 221, 115-118.	.784314 rg 2.6	BT /Overlock 11
64	Double minimum creep in the rafting regime of a single-crystal Co-base superalloy. Scripta Materialia, 2018, 142, 129-132.	5.2	51
65	Scaling of the fracture toughness of freestanding metallic thin films with the yield strength. Materials Research Letters, 2018, 6, 607-612.	8.7	15
66	Influence of stacking fault energy and dislocation character on slip transfer at coherent twin boundaries studied by micropillar compression. Acta Materialia, 2018, 154, 261-272.	7.9	44
67	Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4099-4109.	2.2	58
68	High-temperature corrosion of Inconel®Alloy 718, Haynes®282®Alloy and CoWAlloy1&2 in supercritical ammonia/ammonium chloride solution. Journal of Crystal Growth, 2018, 498, 289-300.	1.5	11
69	Enhanced monotonic and cyclic mechanical properties of ultrafine-grained laminated metal composites with strong and stiff interlayers. International Journal of Fatigue, 2018, 116, 379-387.	5.7	8
70	The Effect of a Grain Boundary Pinning B2 Phase on Polycrystalline Co-Based Superalloys with Reduced Density. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4070-4078.	2.2	11
71	Superplastic deformation behavior of Zn-22% Al alloy investigated by nanoindentation at elevated temperatures. Materials and Design, 2018, 153, 71-79.	7.0	15
72	Microstructure and compression strength of Co-based superalloys hardened by γ′ and carbide precipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 437-444.	5.6	18

#	Article	IF	CITATIONS
73	Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys. Metals and Materials International, 2017, 23, 126-131.	3.4	18
74	Crack nucleation and elastic / plastic deformation of TiAl alloys investigated by in-situ loaded atomic force microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 11-16.	5.6	19
	A novel type of Co–Ti–Cr-base <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		
75	altimg="śi1.gif" overflow="scroll"> <mml:mrow><mml:mi>γ</mml:mi><mml:mo>/</mml:mo> <mml:msup><mml:mi>γsuperalloys with low mass density. Acta Materialia. 2017. 135. 244-251.</mml:mi></mml:msup></mml:mrow>	> < 7.9 1:mc)>â ¹⁹¹ /mml
76	High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 2017, 11, 436-440.	31.4	442
77	On the temperature dependent strengthening of nickel by transition metal solutes. Acta Materialia, 2017, 137, 54-63.	7.9	21
78	Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation. Journal of Materials Research, 2017, 32, 1466-1473.	2.6	22
79	Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 218-225.	5.6	37
80	Influencing hardness and wear during the dynamic tempered microinjection molding process by considering isothermal holding time. Polymer Engineering and Science, 2017, 57, 121-128.	3.1	0
81	Micromechanical characterization of laser consolidated nanoparticle ITO layers. Thin Solid Films, 2017, 642, 214-218.	1.8	2
82	Optimized layer architecture for an extended fatigue life of ultrafine-grained AA1050/AA5005 laminated metal composites. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012036.	0.6	11
83	High temperature properties and fatigue strength of novel wrought γ/γ′ Co-base superalloys. Journal of Materials Research, 2017, 32, 4475-4482.	2.6	37
84	Ex and in situ investigations on the role of persistent slip bands and grain boundaries in fatigue crack initiation. Journal of Materials Research, 2017, 32, 4276-4286.	2.6	13
85	Size-dependent fracture toughness of tungsten. Acta Materialia, 2017, 138, 198-211.	7.9	62
86	Layer architecture and fatigue life of ultrafine-grained laminated metal composites consisting of different aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 406-413.	5.6	16
87	Influence of rhenium on γ′-strengthened cobalt-base superalloys. Journal of Materials Research, 2017, 32, 2551-2559.	2.6	23
88	Plane-strain bulge testing of thin films under compressive residual stresses. Surface and Coatings Technology, 2017, 327, 167-173.	4.8	7
89	Isolating the effect of residual stresses on coating wear by a mechanical stress relaxation technique. Thin Solid Films, 2017, 638, 159-166.	1.8	20
90	Morphology evolution of Ti3AlC carbide precipitates in high Nb containing TiAl alloys. Acta Materialia, 2017, 137, 36-44.	7.9	28

#	Article	IF	CITATIONS
91	Segregation assisted microtwinning during creep of a polycrystalline L12-hardened Co-base superalloy. Acta Materialia, 2017, 123, 295-304.	7.9	83
92	Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scripta Materialia, 2017, 127, 191-194.	5.2	52
93	Microstructure and Mechanical Properties of Accumulative Roll-Bonded AA1050A/AA5005 Laminated Metal Composites. Metals, 2016, 6, 56.	2.3	32
94	Elemental partitioning, lattice misfit and creep behaviour of Cr containing <i>γ</i> ′ strengthened Co base superalloys. Materials Science and Technology, 2016, 32, 220-225.	1.6	71
95	Local mechanical properties of the (βO+ωO) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 665, 135-140.	5.6	13
96	On the transition from plastic deformation to crack initiation in the high- and very high-cycle fatigue regimes in plain carbon steels. International Journal of Fatigue, 2016, 93, 281-291.	5.7	23
97	An improved method for point deflection measurements on rectangular membranes. Materials and Design, 2016, 109, 485-491.	7.0	11
98	Effect of elastic anisotropy on strain relief and residual stress determination in cubic systems by FIB-DIC experiments. Materials and Design, 2016, 112, 505-511.	7.0	11
99	Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Materialia, 2016, 120, 150-158.	7.9	55
100	Improved creep strength of nickel-base superalloys by optimized γ/γâ€2 partitioning behavior of solid solution strengthening elements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 411-420.	5.6	52
101	Fracture toughness evaluation of NiAl single crystals by microcantilevers—a new continuous J-integral method. Journal of Materials Research, 2016, 31, 3786-3794.	2.6	47
102	A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching. Ultramicroscopy, 2016, 171, 82-88.	1.9	13
103	Superior creep strength of a nickel-based superalloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 299-307.	5.6	170
104	Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 2016, 116, 43-52.	7.9	507
105	Tailored heat treated accumulative roll bonded aluminum blanks: failure under bending stresses. Production Engineering, 2016, 10, 399-407.	2.3	1
106	Instantaneous healing of micro-fractures during coseismic slip: Evidence from microstructure and Ti in quartz geochemistry within an exhumed pseudotachylyte-bearing fault in tonalite. Lithos, 2016, 254-255, 84-93.	1.4	10
107	Reliability model of LED package regarding the fatigue behavior of gold wires. , 2016, , .		8
108	Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Materialia, 2016, 106, 304-312.	7.9	131

7

#	Article	IF	CITATIONS
109	Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding. Acta Materialia, 2016, 103, 643-650.	7.9	35
110	Microstructure, Lattice Misfit, and High-Temperature Strength of γ′-Strengthened Co-Al-W-Ge Model Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2141-2149.	2.2	21
111	Mechanical characterization of metallic thin films by bulge and scratch testing. Surface and Coatings Technology, 2016, 289, 69-74.	4.8	26
112	Intermediate Co/Ni-base model superalloys — Thermophysical properties, creep and oxidation. Scripta Materialia, 2016, 112, 83-86.	5.2	74
113	Time-dependent deformation behavior of freestanding and SiN _{<i>x</i>} -supported gold thin films investigated by bulge tests. Journal of Materials Research, 2015, 30, 2161-2169.	2.6	13
114	DFG Research Training Group 1229 "Stable and Metastable Multi-Phase Systems for Elevated Service Temperatures― Advanced Engineering Materials, 2015, 17, 1096-1098.	3.5	0
115	The Thermal Stability of Intermetallic Compounds in an Asâ€Cast SX Coâ€Base Superalloy. Advanced Engineering Materials, 2015, 17, 741-747.	3.5	26
116	Formation of Cuboidal Co ₃ AlC Precipitates in Carbon ontaining Co–Al–Wâ€Based Superalloys. Advanced Engineering Materials, 2015, 17, 1113-1118.	3.5	10
117	Ultrafine-Grained Austenitic Stainless Steels X4CrNi18-12 and X8CrMnNi19-6-3 Produced by Accumulative Roll Bonding. Metals, 2015, 5, 730-742.	2.3	6
118	Microstructure-dependent deformation behaviour of bcc-metals – indentation size effect and strain rate sensitivity. Philosophical Magazine, 2015, 95, 1766-1779.	1.6	64
119	Evolution of microstructure and mechanical properties of coated Co-base superalloys during heat treatment and thermal exposure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 374-381.	5.6	12
120	The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys. Journal of Alloys and Compounds, 2015, 632, 110-115.	5.5	81
121	Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1035-1045.	2.2	39
122	Microsegregation and precipitates of an as-cast Co-based superalloy—microstructural characterization and phase stability modelling. Journal of Materials Science, 2015, 50, 6329-6338.	3.7	46
123	Isothermal aging of a γ′-strengthened Co–Al–W alloy coated with vacuum plasma-sprayed MCrAlY bond coats. Surface and Coatings Technology, 2015, 276, 360-367.	4.8	8
124	Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates. Thin Solid Films, 2015, 583, 25-33.	1.8	10
125	Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 202-208.	5.6	72
126	Mechanical properties of ultrafine-grained AlZnMg(Cu)-alloys AA7020 and AA7075 processed by accumulative roll bonding. Journal of Materials Science, 2015, 50, 4422-4429.	3.7	23

#	Article	IF	CITATIONS
127	Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scripta Materialia, 2015, 109, 104-107.	5.2	130
128	Influence of Iridium on the Properties of γ′‣trengthened Coâ€Base Superalloys. Advanced Engineering Materials, 2015, 17, 748-754.	3.5	18
129	Fatigue behavior of calcium containing AZ91 magnesium alloys*. Materialpruefung/Materials Testing, 2015, 57, 126-130.	2.2	0
130	Fatigue crack initiation in nickel-based superalloys studied by microstructure-based FE modeling and scanning electron microscopy. MATEC Web of Conferences, 2014, 14, 16001.	0.2	1
131	The Strengthening Effect of Phase Boundaries in a Severely Plastically Deformed Ti-Al Composite Wire. Metals, 2014, 4, 37-54.	2.3	4
132	Bulge fatigue testing of freestanding and supported gold films. Journal of Materials Research, 2014, 29, 267-276.	2.6	26
133	Microstructure and mechanical properties of Cr–Ta–Si Laves phase-based alloys at elevated temperatures. Philosophical Magazine, 2014, 94, 3914-3944.	1.6	14
134	Microcantilever bending experiments in NiAl – Evaluation, size effects, and crack tip plasticity. Journal of Materials Research, 2014, 29, 2129-2140.	2.6	67
135	Influence of cross-rolling on the mechanical properties of an accumulative roll bonded aluminum alloy AA6014. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 122-127.	5.6	32
136	Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system. Intermetallics, 2014, 55, 28-39.	3.9	141
137	Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Materialia, 2014, 78, 78-85.	7.9	168
138	Crack initiation mechanisms in AA6082 fatigued in the VHCF-regime. International Journal of Fatigue, 2014, 60, 23-27.	5.7	14
139	Characterization of Oxidation Protection Coatings for High Temperature Applications by Means of Nanoindentation and Scanning Electron Microscopy Methods. Praktische Metallographie/Practical Metallography, 2014, 51, 568-582.	0.3	1
140	Influence of specimen geometry on temperature increase during ultrasonic fatigue testing. Ultrasonics, 2013, 53, 1412-1416.	3.9	3
141	Highly resolved analysis of the chemistry and mechanical properties of an a-C:H coating system by nanoindentation and auger electron spectroscopy. Thin Solid Films, 2013, 528, 263-268.	1.8	5
142	Influence of upscaling accumulative roll bonding on the homogeneity and mechanical properties of AA1050A. Journal of Materials Science, 2013, 48, 8377-8385.	3.7	22
143	Surface strain evolution of ultrafine-grained aluminum alloy laminates under tension – Microscale plastic instabilities and the Portevin–Le Chatelier effect. Scripta Materialia, 2013, 68, 809-812.	5.2	9
144	Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 13-18.	5.6	84

#	Article	IF	CITATIONS
145	Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 108-113.	5.6	87
146	A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation. Surface and Coatings Technology, 2013, 215, 247-252.	4.8	70
147	Comparison of the monotonic and cyclic mechanical properties of ultrafine-grained low carbon steels processed by continuous and conventional equal channel angular pressing. Materials & Design, 2013, 47, 138-142.	5.1	11
148	Asymmetric accumulative roll bonding of aluminium–titanium composite sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 306-315.	5.6	50
149	Poly(glycerol sebacate) <scp>P</scp> oly(butylene succinateâ€dilinoleate) Blends as Candidate Materials for Cardiac Tissue Engineering. Macromolecular Symposia, 2013, 334, 57-67.	0.7	15
150	An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. Journal of Materials Research, 2013, 28, 1177-1188.	2.6	130
151	Strain-Rate Sensitivity (SRS) of Nickel by Instrumented Indentation. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 47-52.	0.5	2
152	Formability of Ultrafine-Grained AA6016 Sheets Processed by Accumulative Roll Bonding. Key Engineering Materials, 2012, 504-506, 575-580.	0.4	3
153	Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philosophical Magazine, 2012, 92, 3172-3187.	1.6	14
154	Experimental determination of the effective indenter shape and <i>$\hat{l}\mu$</i> -factor for nanoindentation by continuously measuring the unloading stiffness. Journal of Materials Research, 2012, 27, 214-221.	2.6	26
155	Determination of the interfacial strength and fracture toughness of a-C:H coatings by in-situ microcantilever bending. Thin Solid Films, 2012, 522, 480-484.	1.8	50
156	Effect of thermal annealing on the mechanical properties of low-emissivity physical vapor deposited multilayer-coatings for architectural applications. Thin Solid Films, 2012, 520, 7130-7135.	1.8	19
157	Microstructure development and hardness of a powder metallurgical multi phase Î ³ -TiAl based alloy. Intermetallics, 2012, 22, 231-240.	3.9	134
158	Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading. Metals, 2012, 2, 56-64.	2.3	11
159	Ultrafineâ€grained AA6014/AA5754 laminates produced by accumulative roll bonding (ARB). Materialwissenschaft Und Werkstofftechnik, 2012, 43, 334-339.	0.9	7
160	Influence of the ECAP Processing Parameters on the Cyclic Deformation Behavior on Ultrafineâ€Grained Cubic Face Centered Metals. Advanced Engineering Materials, 2012, 14, 842-847.	3.5	1
161	Design of Graded Materials by Particle Reinforcement During Accumulative Roll Bonding. Advanced Engineering Materials, 2012, 14, 1009-1017.	3.5	12
162	Tailored Heat Treated Accumulative Roll Bonded Aluminum Blanks: Microstructure and Mechanical Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3097-3107.	2.2	15

MATHIAS GöKEN

#	Article	IF	CITATIONS
163	In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Materialia, 2012, 60, 1193-1200.	7.9	137
164	On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Materialia, 2012, 60, 2277-2289.	7.9	89
165	The influence of hydrogenated amorphous carbon coatings (a-C:H) on the fatigue life of coated steel specimens. International Journal of Fatigue, 2012, 37, 1-7.	5.7	7
166	Deformation and ultrafine dynamic recrystallization of quartz in pseudotachylyte-bearing brittle faults: A matter of a few seconds. Journal of Structural Geology, 2012, 38, 21-38.	2.3	55
167	Creep properties of different γ′-strengthened Co-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 333-341.	5.6	166
168	Discontinuous Precipitation and Phase Stability In Re- and Ru-Containing Nickel-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 10-19.	2.2	29
169	Creep Strength and Microstructure of Polycrystalline γ' - Strengthened Cobalt-base Superalloys. , 2012, , .		31
170	Influence of rhenium and ruthenium on the local mechanical properties of the <i>γ</i> and <i>γ</i> ′ phases in nickel-base superalloys. Philosophical Magazine, 2011, 91, 4187-4199.	1.6	27
171	Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu. Metals, 2011, 1, 65-78.	2.3	19
172	High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corrosion Science, 2011, 53, 2027-2034.	6.6	167
173	Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. Journal of Materials Research, 2011, 26, 1421-1430.	2.6	272
174	Pseudotachylyte in muscovite-bearing quartzite: Coseismic friction-induced melting and plastic deformation of quartz. Journal of Structural Geology, 2011, 33, 169-186.	2.3	46
175	Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scripta Materialia, 2011, 64, 245-248.	5.2	88
176	Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling. Acta Materialia, 2011, 59, 5422-5433.	7.9	69
177	Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys. Acta Materialia, 2011, 59, 6563-6573.	7.9	84
178	Nanoindentation and XRD investigations of single crystalline Ni–Ge brazed nickel-base superalloys PWA 1483 and René N5. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 815-822.	5.6	30
179	Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests. Acta Materialia, 2011, 59, 1772-1779.	7.9	80
180	Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: Experiments and molecular dynamics simulations. Acta Materialia, 2011, 59, 4264-4273.	7.9	112

#	Article	IF	CITATIONS
181	Miniaturized bend tests on partially stabilized EB-PVD ZrO2 thermal barrier coatings. Surface and Coatings Technology, 2011, 205, 3245-3250.	4.8	15
182	Microscopic study on the interfacial strength of hydrogenated amorphous carbon coating systems. Surface and Coatings Technology, 2011, 205, 3429-3433.	4.8	9
183	Life prediction of thermally highly loaded components: modelling the damage process of a rocket combustion chamber hot wall. CEAS Space Journal, 2011, 1, 83-97.	2.3	18
184	High-Temperature Mechanical Behavior of End-of-Life Cryomilled NiCrAlY Bond Coat Materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2233-2241.	2.2	5
185	Influence of Backpressure During ECAP on the Monotonic and Cyclic Deformation Behavior of AA5754 and Cu99.5. Advanced Engineering Materials, 2011, 13, 269-274.	3.5	7
186	Macro―and Nanomechanical Properties and Strain Rate Sensitivity of Accumulative Roll Bonded and Equal Channel Angular Pressed Ultrafineâ€Grained Materials. Advanced Engineering Materials, 2011, 13, 251-255.	3.5	34
187	Tailoring Nanostructured, Graded, and Particleâ€Reinforced Al Laminates by Accumulative Roll Bonding. Advanced Materials, 2011, 23, 2663-2668.	21.0	54
188	Studies on the Origin of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces. Chemie-Ingenieur-Technik, 2011, 83, 545-551.	0.8	6
189	Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime. International Journal of Fatigue, 2011, 33, 10-18.	5.7	46
190	The effect of Re and Ru on γ/Î3′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3435-3444.	5.6	162
191	Dynamic nanoindentation of articular porcine cartilage. Materials Science and Engineering C, 2011, 31, 789-795.	7.3	58
192	Fatigue behaviour in nanostructured metals. , 2011, , 507-541.		8
193	Nano-mechanical testing in materials research and development. Philosophical Magazine, 2011, 91, 1035-1036.	1.6	2
194	Influence of microstructure on creep strength of MRI 230D Mg alloy. Journal of Physics: Conference Series, 2010, 240, 012068.	0.4	7
195	Deformation Behaviour of Nanocrystalline Al Alloy, Processed by Severe Plastic Deformation. , 2010, , .		1
196	Localized corrosion of ultrafine-grained Al–Mg model alloys. Electrochimica Acta, 2010, 55, 1966-1970.	5.2	81
197	Microimprinting of nanocrystalline metals – Influence of microstructure and work hardening. Journal of Materials Processing Technology, 2010, 210, 1787-1793.	6.3	16
198	Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets. Journal of Materials Science, 2010, 45, 4733-4738.	3.7	48

#	Article	IF	CITATIONS
199	Preface to the Special Issue on Ultrafine Grained Materials. Journal of Materials Science, 2010, 45, 4543-4544.	3.7	3
200	Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scripta Materialia, 2010, 63, 1197-1200.	5.2	262
201	Tailoring Materials Properties by Accumulative Roll Bonding. Advanced Engineering Materials, 2010, 12, 740-746.	3.5	49
202	The Influence of Particle Size on the Mechanical Properties of Dental Glass Ionomer Cements. Advanced Engineering Materials, 2010, 12, B684.	3.5	6
203	Influence of grain size and precipitates on the fatigue lives and deformation mechanisms in the VHCF-regime. Procedia Engineering, 2010, 2, 1025-1034.	1.2	27
204	Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys. Journal of Crystal Growth, 2010, 312, 2137-2144.	1.5	56
205	Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7939-7943.	5.6	45
206	Micromechanics and ultrastructure of pyrolysed softwood cell walls. Acta Biomaterialia, 2010, 6, 4345-4351.	8.3	26
207	Microstructural and micromechanical characterisation of a Pt–Al–Cr–Ni–Re alloy by means of transmission electron microscopy and nanoindentation. International Journal of Materials Research, 2010, 101, 585-588.	0.3	2
208	Nanomechanical behaviour of Al-Ti layered composites produced by accumulative roll bonding. Journal of Physics: Conference Series, 2010, 240, 012108.	0.4	13
209	Microstructure and mechanical properties of accumulative roll bonded aluminium alloy AA5754. Journal of Physics: Conference Series, 2010, 240, 012128.	0.4	11
210	Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. Journal of Materials Research, 2009, 24, 1127-1134.	2.6	24
211	The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. Journal of Materials Research, 2009, 24, 1197-1207.	2.6	27
212	Microstructural evolution during creep of Ca-containing AZ91. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 398-402.	5.6	63
213	Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 295-300.	5.6	49
214	Particle Hardening in Creep-Resistant Mg-Alloy MRI 230D Probed by Nanoindenting Atomic Force Microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 257-261.	2.2	13
215	Fatigue behavior of ultrafine-grained Ti–6Al–4V â€~ELl' alloy for medical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 145-147.	5.6	49
216	Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use. International Journal of Fatigue, 2009, 31, 322-331.	5.7	88

MATHIAS GöKEN

#	Article	IF	CITATIONS
217	In-situ investigation on the deformation and damage behaviour of diamond-like carbon coated thin films under uniaxial loading. Thin Solid Films, 2009, 517, 1681-1685.	1.8	22
218	In-situ tensile testing of crystalline diamond coatings using Raman spectroscopy. Surface and Coatings Technology, 2009, 204, 1022-1025.	4.8	28
219	Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 163-166.	5.6	52
220	Microstructural and micromechanical characterisation of TiAl alloys using atomic force microscopy and nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 235-241.	5.6	28
221	Study on the indentation size effect in CaF2: Dislocation structure and hardness. Acta Materialia, 2009, 57, 1281-1289.	7.9	51
222	Microstructural evolution during deformation of tin dioxide nanoparticles in a comminution process. Acta Materialia, 2009, 57, 3060-3071.	7.9	29
223	Quantification of dislocation structures at high resolution by atomic force microscopy of dislocation etch pits. Philosophical Magazine Letters, 2009, 89, 391-398.	1.2	7
224	Designing bulk metallic glass and glass matrix composites in martensitic alloys. Journal of Alloys and Compounds, 2009, 483, 97-101.	5.5	47
225	Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding. Journal of Materials Science, 2008, 43, 7320-7325.	3.7	37
226	XRD profile analysis characterization of ultrafine grained Al–Mg alloys. Journal of Materials Science, 2008, 43, 7481-7487.	3.7	13
227	The nanoindentation of soft tissue: Current and developing approaches. Jom, 2008, 60, 49-53.	1.9	31
228	Enhanced superplastic deformation behavior of ultrafineâ€grained Tiâ€6Alâ€4V alloy. Materialwissenschaft Und Werkstofftechnik, 2008, 39, 367-370.	0.9	15
229	Cellâ€based resurfacing of large cartilage defects: Longâ€term evaluation of grafts from autologous transgeneâ€activated periosteal cells in a porcine model of osteoarthritis. Arthritis and Rheumatism, 2008, 58, 475-488.	6.7	63
230	Formability of Accumulative Roll Bonded Aluminum AA1050 and AA6016 Investigated Using Bulge Tests. Advanced Engineering Materials, 2008, 10, 1101-1109.	3.5	27
231	Damage evolution during thermo-mechanical fatigue of a coated monocrystalline nickel-base superalloy. International Journal of Fatigue, 2008, 30, 313-317.	5.7	34
232	Monotonic and cyclic deformation behaviour of ultrafine-grained aluminium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 481-484.	5.6	27
233	Indentation size effect in spherical and pyramidal indentations. Journal Physics D: Applied Physics, 2008, 41, 074005.	2.8	77
234	Hardening and thermal stability of nanocrystalline AlMg4.8 powder. Philosophical Magazine, 2008, 88, 1209-1226.	1.6	2

#	Article	IF	CITATIONS
235	In situ bulge testing in an atomic force microscope: Microdeformation experiments of thin film membranes. Journal of Materials Research, 2007, 22, 2902-2911.	2.6	27
236	Elastic moduli and hardness of c-Zr2.86(N0.88O0.12)4 having Th3P4-type structure. Applied Physics Letters, 2007, 90, 191910.	3.3	14
237	Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016. International Journal of Materials Research, 2007, 98, 320-324.	0.3	30
238	Deformation kinetics of nanocrystalline nickel. Acta Materialia, 2007, 55, 5708-5717.	7.9	75
239	Indentation size effect in Ni–Fe solid solutions. Acta Materialia, 2007, 55, 6825-6833.	7.9	92
240	Mechanical properties of hyaline and repair cartilage studied by nanoindentation. Acta Biomaterialia, 2007, 3, 873-881.	8.3	113
241	Microstructure and local mechanical properties of Pt-modified nickel aluminides on nickel-base superalloys after thermo-mechanical fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 467, 15-23.	5.6	33
242	Investigation of the sliding contact properties of WC-Co hard metals using nanoscratch testing. Wear, 2007, 263, 1602-1609.	3.1	50
243	Mechanical Properties, Dislocation Density and Grain Structure of Ultrafine-Grained Aluminum and Aluminum-Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1941-1945.	2.2	56
244	Symposium on Ultrafine-Grained Materials: From Basics to Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1881-1881.	2.2	0
245	Determination of plastic properties of polycrystalline metallic materials by nanoindentation: experiments and finite element simulations. Philosophical Magazine, 2006, 86, 5541-5551.	1.6	39
246	Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Materialia, 2006, 54, 2547-2555.	7.9	300
247	The influence of microstructure on the magnetic properties of WC/Co hardmetals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 306-312.	5.6	21
248	Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scripta Materialia, 2005, 52, 1093-1097.	5.2	337
249	Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Materialia, 2005, 53, 189-194.	5.2	268
250	Strain-rate sensitivity of ultrafine-grained materials. International Journal of Materials Research, 2005, 96, 566-571.	0.8	65
251	On the pressure dependence of the indentation modulus. International Journal of Materials Research, 2005, 96, 1247-1251.	0.8	3
252	Nanomech 5. International Journal of Materials Research, 2005, 96, 1225-1225.	0.8	0

MATHIAS GöKEN

#	Article	IF	CITATIONS
253	The Mechanical Properties in the Vicinity of Grain Boundaries in Ultrafine-Grained and Polycrystalline Materials Studied by Nanoindentations. Materials Research Society Symposia Proceedings, 2004, 819, N4.9.1/P4.9.1.	0.1	2
254	The Mechanical Properties in the Vicinity of Grain Boundaries in Ultrafine-Grained and Polycrystalline Materials Studied by Nanoindentations. Materials Research Society Symposia Proceedings, 2004, 821, .	0.1	0
255	Determination of Plastic Properties of Polycrystalline Metallic Materials by Nanoindentation – Experiments and Finite Element Simulations. Materials Research Society Symposia Proceedings, 2004, 841, R11.4.1.	0.1	1
256	Finite element study for nanoindentation measurements on two-phase materials. Journal of Materials Research, 2004, 19, 85-93.	2.6	94
257	Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding. Advanced Engineering Materials, 2004, 6, 219-222.	3.5	37
258	Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding. Advanced Engineering Materials, 2004, 6, 781-784.	3.5	162
259	Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 312-316.	5.6	67
260	Correlation between constitution, properties and machining performance of TiN/ZrN multilayers. Surface and Coatings Technology, 2004, 188-189, 331-337.	4.8	43
261	Finite element study for nanoindentation measurements on two-phase materials. Journal of Materials Research, 2004, 19, 85-93.	2.6	1
262	The grain boundary hardness in austenitic stainless steels studied by nanoindentations. International Journal of Materials Research, 2004, 95, 492-498.	0.8	7
263	Nanoindentations as a Local Probe for the Mechanical Properties and Alloying Influences in Nickel-Base Superalloys and Aluminide Coatings. , 2004, , .		3
264	Characterization of phases of aluminized nickel base superalloys. Surface and Coatings Technology, 2003, 167, 83-96.	4.8	71
265	Finite element simulation of spherical indentation in the elastic‑plastic transition. International Journal of Materials Research, 2002, 93, 857-861.	0.8	14
266	Study of crack tip deformation in FeAl and NiAl crystals with optical interference microscopy and atomic force microscopy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3241-3250.	0.6	7
267	Study of crack tip deformation in FeAl and NiAl crystals with optical interference microscopy and atomic force microscopy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3241-3250.	0.6	2
268	Free-Surface Structure and Properties. , 2002, , 211-230.		2
269	Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surface and Interface Analysis, 2002, 33, 65-70.	1.8	208
270	Properties of eutectic Ru–Al alloy produced by ingot metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 38-44.	5.6	4

#	Article	IF	CITATIONS
271	The mechanical properties of different lamellae and domains in PST-TiAl investigated with nanoindentations and atomic force microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 184-189.	5.6	30
272	On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 26-32.	5.6	147
273	Elastic Moduli and Hardness of Cubic Silicon Nitride. Journal of the American Ceramic Society, 2002, 85, 86-90.	3.8	146
274	Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM. Acta Materialia, 2001, 49, 903-911.	7.9	113
275	Microstructural mechanical properties and yield point effects in Mo alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 902-908.	5.6	24
276	Quantitative Gefügechararakterisierung mittels Rasterkraftmikroskopie und Elektronenmikroskopie — Eine vergleichende Studie der Superlegierung Waspaloy / Quantitative Microstructural Characterisation by Atomic Force Microscopy and Electron Microscopy -— A Comparative Study on the Superalloy Waspaloy. Praktische Metallographie/Practical Metallography, 2001, 38, 197-215.	0.3	8
277	Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope. Acta Materialia, 1999, 47, 1043-1052.	7.9	122
278	Nanomechanical characterizations of metals and thin films. Surface and Interface Analysis, 1999, 27, 302-306.	1.8	45
279	Study of the fracture behavior in soft and hard oriented NiAl single crystals by AFM. Intermetallics, 1999, 7, 491-499.	3.9	18
280	Nanohardness measurements for studying local mechanical properties of metals. Applied Physics A: Materials Science and Processing, 1998, 66, S843-S846.	2.3	42
281	Scanning Force Microscopy as a Tool for Fracture Studies. Materials Research Society Symposia Proceedings, 1998, 539, 3.	0.1	0
282	Deformation processes at crack tips in NiAl single- and bicrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 239-240, 378-385.	5.6	20
283	Quantitative metallography of structural materials with the atomic force microscope. Scripta Materialia, 1996, 35, 983-989.	5.2	23
284	Atomic force microscopy investigations of loaded crack tips in NiAl. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1157.	1.6	19
285	Investigations of loaded crack tips in NiAl by atomic force microscopy. Scripta Metallurgica Et Materialia, 1995, 33, 1187-1192.	1.0	18
286	Scanning tunneling microscopy in UHV with an X,Y,Z micropositioner. Review of Scientific Instruments, 1994, 65, 2252-2254.	1.3	18
287	Fracture Toughness Evaluation of a Cracked Au Thin Film by Applying a Finite Element Analysis and Bulge Test. Key Engineering Materials, 0, 827, 196-202.	0.4	2
288	Deformation of WC-Co Hardmetals During Scratch Testing. , 0, , 171-177.		0

#	ARTICLE	IF	CITATIONS
289	A new method for microscale cyclic crack growth characterization from notched microcantilevers and application to single crystalline tungsten and a metallic glass. Journal of Materials Research, 0, , .	2.6	4