David A Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940064/publications.pdf

Version: 2024-02-01

510 papers 58,919 citations

119 h-index 216 g-index

542 all docs 542 docs citations

542 times ranked 37435 citing authors

#	Article	IF	CITATIONS
1	Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience, 2005, 6, 312-324.	4.9	2,065
2	Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. Archives of General Psychiatry, 2000, 57, 65.	13.8	1,419
3	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	4.9	1,314
4	Schizophrenia as a Disorder of Neurodevelopment. Annual Review of Neuroscience, 2002, 25, 409-432.	5.0	1,026
5	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	7.1	952
6	Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 2012, 35, 57-67.	4.2	892
7	Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex. Neuron, 2000, 28, 53-67.	3.8	861
8	Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 2018, 359, 693-697.	6.0	851
9	Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia. Journal of Neuroscience, 2003, 23, 6315-6326.	1.7	843
10	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
11	Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology, 2006, 59, 478-489.	2.8	748
12	Catching Up on Schizophrenia. Neuron, 2000, 28, 325-334.	3.8	712
13	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	4.9	707
14	Decreased Glutamic Acid Decarboxylase67 Messenger RNA Expression in a Subset of Prefrontal Cortical Î ³ -Aminobutyric Acid Neurons in Subjects With Schizophrenia. Archives of General Psychiatry, 2000, 57, 237.	13.8	622
15	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
16	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 2019, 202, 116091.	2.1	539
17	Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. Journal of Neuroscience, 1987, 7, 1799-1808.	1.7	535
18	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516

#	Article	IF	CITATIONS
19	Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1956-1961.	3.3	502
20	GABA Neurons and the Mechanisms of Network Oscillations: Implications for Understanding Cortical Dysfunction in Schizophrenia. Schizophrenia Bulletin, 2008, 34, 944-961.	2.3	500
21	Steroid-induced psychiatric syndromes. Journal of Affective Disorders, 1983, 5, 319-332.	2.0	487
22	Dendritic spine pathology in schizophrenia. Neuroscience, 2013, 251, 90-107.	1.1	472
23	Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology. Journal of Comparative Neurology, 1994, 341, 95-116.	0.9	461
24	Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Molecular Psychiatry, 2008, 13, 147-161.	4.1	447
25	Stereological Approaches to Identifying Neuropathology in Psychosis. Biological Psychiatry, 2011, 69, 113-126.	0.7	435
26	Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Molecular Psychiatry, 2011, 16, 751-762.	4.1	425
27	Gene Expression Profiling Reveals Alterations of Specific Metabolic Pathways in Schizophrenia. Journal of Neuroscience, 2002, 22, 2718-2729.	1.7	414
28	Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Molecular Psychiatry, 2001, 6, 293-301.	4.1	413
29	Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016, 15, 485-515.	21.5	410
30	Alterations in Cortical Network Oscillations and Parvalbumin Neurons in Schizophrenia. Biological Psychiatry, 2015, 77, 1031-1040.	0.7	409
31	A subclass of prefrontal Â-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5341-5346.	3.3	402
32	Conserved Regional Patterns of GABA-Related Transcript Expression in the Neocortex of Subjects With Schizophrenia. American Journal of Psychiatry, 2008, 165, 479-489.	4.0	396
33	Relationship of Brain-Derived Neurotrophic Factor and Its Receptor TrkB to Altered Inhibitory Prefrontal Circuitry in Schizophrenia. Journal of Neuroscience, 2005, 25, 372-383.	1.7	390
34	NMDA Receptor Hypofunction, Parvalbumin-Positive Neurons, and Cortical Gamma Oscillations in Schizophrenia. Schizophrenia Bulletin, 2012, 38, 950-957.	2.3	388
35	Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends in Neurosciences, 2001, 24, 479-486.	4.2	383
36	Cognitive Dysfunction in Schizophrenia. Archives of Neurology, 2006, 63, 1372.	4.9	380

#	Article	IF	CITATIONS
37	The Influence of Chronic Exposure to Antipsychotic Medications on Brain Size before and after Tissue Fixation: A Comparison of Haloperidol and Olanzapine in Macaque Monkeys. Neuropsychopharmacology, 2005, 30, 1649-1661.	2.8	372
38	Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 2002, 52, 478-502.	0.7	355
39	Controlled prospective study of postpartum mood disorders: Psychological, environmental, and hormonal variables Journal of Abnormal Psychology, 1991, 100, 63-73.	2.0	348
40	Neuroplasticity of Neocortical Circuits in Schizophrenia. Neuropsychopharmacology, 2008, 33, 141-165.	2.8	329
41	Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization. Journal of Comparative Neurology, 2001, 432, 119-136.	0.9	325
42	Lamina-Specific Alterations in the Dopamine Innervation of the Prefrontal Cortex in Schizophrenic Subjects. American Journal of Psychiatry, 1999, 156, 1580-1589.	4.0	319
43	Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 2002, 11, 1373-1380.	1.4	318
44	Development of the Prefrontal Cortex during Adolescence: Insights into Vulnerable Neural Circuits in Schizophrenia. Neuropsychopharmacology, 1997, 16, 385-398.	2.8	317
45	Keep off the grass? Cannabis, cognition and addiction. Nature Reviews Neuroscience, 2016, 17, 293-306.	4.9	315
46	Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis. Journal of Comparative Neurology, 1995, 358, 383-400.	0.9	311
47	Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Molecular Psychiatry, 2012, 17, 1130-1142.	4.1	311
48	Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science, 1987, 237, 77-80.	6.0	308
49	Pathophysiologically based treatment interventions in schizophrenia. Nature Medicine, 2006, 12, 1016-1022.	15.2	307
50	The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. Journal of Neuroscience, 1987, 7, 279-290.	1.7	306
51	Molecular Evidence for Increased Expression of Genes Related to Immune and Chaperone Function in the Prefrontal Cortex in Schizophrenia. Biological Psychiatry, 2007, 62, 711-721.	0.7	302
52	Prospective Study of Postpartum Blues. Archives of General Psychiatry, 1991, 48, 801.	13.8	299
53	Reduction of Synaptophysin Immunoreactivity in the Prefrontal Cortex of Subjects With Schizophrenia. Archives of General Psychiatry, 1997, 54, 943.	13.8	268
54	Subunit-Selective Modulation of GABA Type A Receptor Neurotransmission and Cognition in Schizophrenia. American Journal of Psychiatry, 2008, 165, 1585-1593.	4.0	264

#	Article	IF	CITATIONS
55	GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Research Reviews, 2000, 31, 270-276.	9.1	259
56	Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biological Psychiatry, 1999, 46, 616-626.	0.7	252
57	Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia. Neuropsychopharmacology, 2009, 34, 374-389.	2.8	250
58	Reciprocal Alterations in Pre- and Postsynaptic Inhibitory Markers at Chandelier Cell Inputs to Pyramidal Neurons in Schizophrenia. Cerebral Cortex, 2002, 12, 1063-1070.	1.6	244
59	Cortical Deficits of Glutamic Acid Decarboxylase 67 Expression in Schizophrenia: Clinical, Protein, and Cell Type-Specific Features. American Journal of Psychiatry, 2011, 168, 921-929.	4.0	237
60	Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia. Current Psychiatry Reports, 2010, 12, 335-344.	2.1	235
61	Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience, 1995, 67, 7-22.	1.1	234
62	Alterations in Chandelier Neuron Axon Terminals in the Prefrontal Cortex of Schizophrenic Subjects. American Journal of Psychiatry, 1999, 156, 1709-1719.	4.0	234
63	The Initial Field Trials of DSM-5: New Blooms and Old Thorns. American Journal of Psychiatry, 2013, 170, 1-5.	4.0	229
64	Effect of Chronic Antipsychotic Exposure on Astrocyte and Oligodendrocyte Numbers in Macaque Monkeys. Biological Psychiatry, 2008, 63, 759-765.	0.7	228
65	REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nature Medicine, 2014, 20, 531-535.	15.2	226
66	Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology, 2004, 174, 143-50.	1.5	224
67	Decreased Somal Size of Deep Layer 3 Pyramidal Neurons in the Prefrontal Cortex of Subjects With Schizophrenia. Archives of General Psychiatry, 2001, 58, 466.	13.8	223
68	Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin-releasing factor-and parvalbumin-immunoreactive populations. Journal of Comparative Neurology, 1990, 293, 599-615.	0.9	221
69	Brain-Derived Neurotrophic Factor Signaling and Subgenual Anterior Cingulate Cortex Dysfunction in Major Depressive Disorder. American Journal of Psychiatry, 2012, 169, 1194-1202.	4.0	221
70	Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. Journal of Comparative Neurology, 1995, 363, 264-280.	0.9	215
71	Lamina-Specific Reductions in Dendritic Spine Density in the Prefrontal Cortex of Subjects With Schizophrenia. American Journal of Psychiatry, 2005, 162, 1200-1202.	4.0	215
72	Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 206-211.	3.3	215

#	Article	IF	CITATIONS
73	Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9) Tj ETQq1	1 0,784314	rgBT /Over
74	Immunocytochemical Distribution of the Cannabinoid CB1 Receptor in the Primate Neocortex: A Regional and Laminar Analysis. Cerebral Cortex, 2006, 17, 175-191.	1.6	211
75	Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Molecular Psychiatry, 2006, 11, 557-566.	4.1	209
76	Reduced Cortical Cannabinoid 1 Receptor Messenger RNA and Protein Expression in Schizophrenia. Archives of General Psychiatry, 2008, 65, 772.	13.8	208
77	Opposite Molecular Signatures of Depression in Men and Women. Biological Psychiatry, 2018, 84, 18-27.	0.7	205
78	Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. Journal of Comparative Neurology, 1993, 328, 282-312.	0.9	204
79	Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiology of Disease, 2019, 131, 104208.	2.1	203
80	GABA Transporter-1 mRNA in the Prefrontal Cortex in Schizophrenia: Decreased Expression in a Subset of Neurons. American Journal of Psychiatry, 2001, 158, 256-265.	4.0	202
81	Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. Journal of Clinical Investigation, 2009, 119, 706-716.	3.9	202
82	GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia. Neural Plasticity, 2011, 2011, 1-24.	1.0	193
83	Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Research, 1995, 59, 81-96.	1.7	191
84	Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. American Journal of Psychiatry, 1997, 154, 1013-1015.	4.0	189
85	Lamina-Specific Deficits in Parvalbumin-Immunoreactive Varicosities in the Prefrontal Cortex of Subjects With Schizophrenia: Evidence for Fewer Projections From the Thalamus. American Journal of Psychiatry, 2001, 158, 1411-1422.	4.0	187
86	Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Current Opinion in Neurobiology, 2014, 26, 22-26.	2.0	187
87	GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. International Journal of Neuropsychopharmacology, 2011, 14, 721-734.	1.0	185
88	Patterns of intrinsic and associational circuitry in monkey prefrontal cortex., 1996, 376, 614-630.		180
89	Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia. Neuropsychopharmacology, 2016, 41, 2206-2214.	2.8	180
90	Alterations in Somatostatin mRNA Expression in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia or Schizoaffective Disorder. Cerebral Cortex, 2008, 18, 1575-1587.	1.6	178

#	Article	IF	Citations
91	A Molecular Signature of Depression in the Amygdala. American Journal of Psychiatry, 2009, 166, 1011-1024.	4.0	177
92	Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry,the, 2014, 1, 549-558.	3.7	177
93	The Human Brain Revisited Opportunities and Challenges in Postmortem Studies of Psychiatric Disorders. Neuropsychopharmacology, 2002, 26, 143-154.	2.8	174
94	Differential regulation of amyloid-beta-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1297-1301.	3.3	170
95	Effect of Chronic Exposure to Antipsychotic Medication on Cell Numbers in the Parietal Cortex of Macaque Monkeys. Neuropsychopharmacology, 2007, 32, 1216-1223.	2.8	170
96	A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer's disease. Brain Research, 1987, 416, 331-336.	1.1	164
97	Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study. Biological Psychiatry, 1994, 36, 272-277.	0.7	159
98	Localization of Calcium-binding Proteins in Physiologically and Morphologically Characterized Interneurons of Monkey Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2005, 15, 1178-1186.	1.6	158
99	An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. Journal of Comparative Neurology, 1986, 248, 1-18.	0.9	156
100	Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiology of Disease, 2011, 42, 116-124.	2.1	156
101	Dopamine Increases Excitability of Pyramidal Neurons in Primate Prefrontal Cortex. Journal of Neurophysiology, 2000, 84, 2799-2809.	0.9	154
102	Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Molecular Psychiatry, 2015, 20, 1397-1405.	4.1	154
103	Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiology and Behavior, 2002, 77, 501-505.	1.0	149
104	CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Scientific Data, 2019, 6, 180.	2.4	149
105	Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. Journal of Comparative Neurology, 2005, 491, 270-289.	0.9	147
106	Horizontal Synaptic Connections in Monkey Prefrontal Cortex: An In Vitro Electrophysiological Study. Cerebral Cortex, 2000, 10, 82-92.	1.6	145
107	Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience, 1997, 80, 1149-1158.	1.1	144
108	Functional Properties of Fast Spiking Interneurons and Their Synaptic Connections With Pyramidal Cells in Primate Dorsolateral Prefrontal Cortex. Journal of Neurophysiology, 2005, 93, 942-953.	0.9	140

#	Article	IF	Citations
109	Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology, 2017, 124, 89-104.	2.0	140
110	Reduction of Synaptophysin Immunoreactivity in the Prefrontal Cortex of Subjects With Schizophrenia. Archives of General Psychiatry, 1997, 54, 660.	13.8	139
111	Tyrosine Hydroxylase- and Dopamine Transporter-Immunoreactive Axons in the Primate Cerebellum Evidence for a Lobular- and Laminar-Specific Dopamine Innervation. Neuropsychopharmacology, 2000, 22, 466-472.	2.8	137
112	A Neonatal Ventral Hippocampal Lesion Causes Functional Deficits in Adult Prefrontal Cortical Interneurons. Journal of Neuroscience, 2008, 28, 12691-12699.	1.7	137
113	Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia. Journal of Neuroscience, 2011, 31, 142-156.	1.7	136
114	Noradrenergic innervation of monkey prefrontal cortex: A dopamine-?-hydroxylase immunohistochemical study. Journal of Comparative Neurology, 1989, 282, 317-330.	0.9	135
115	Deficits in Transcriptional Regulators of Cortical Parvalbumin Neurons in Schizophrenia. American Journal of Psychiatry, 2012, 169, 1082-1091.	4.0	135
116	Protracted Developmental Trajectories of GABAA Receptor $\hat{l}\pm 1$ and $\hat{l}\pm 2$ Subunit Expression in Primate Prefrontal Cortex. Biological Psychiatry, 2009, 65, 1015-1023.	0.7	134
117	Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disorders, 2009, 11, 701-710.	1.1	133
118	The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Research, 1988, 449, 225-243.	1.1	132
119	Cortical circuit dysfunction and cognitive deficits in schizophrenia – implications for preemptive interventions. European Journal of Neuroscience, 2012, 35, 1871-1878.	1.2	130
120	Critical Appraisal of DNA Microarrays in Psychiatric Genomics. Biological Psychiatry, 2006, 60, 163-176.	0.7	129
121	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal of Human Genetics, 2018, 102, 1169-1184.	2.6	128
122	Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Translational Psychiatry, 2019, 9, 151.	2.4	127
123	Distribution of choline acetyltransferase-, serotonin-, dopamine-?-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. Journal of Comparative Neurology, 1987, 261, 209-220.	0.9	126
124	Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects. Molecular Psychiatry, 2014, 19, 30-36.	4.1	126
125	Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia. American Journal of Psychiatry, 2016, 173, 1131-1139.	4.0	124
126	Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Research Bulletin, 2000, 52, 309-317.	1.4	121

#	Article	IF	CITATIONS
127	Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience, 2009, 158, 1406-1415.	1.1	121
128	Cluster Analysis–Based Physiological Classification and Morphological Properties of Inhibitory Neurons in Layers 2–3 of Monkey Dorsolateral Prefrontal Cortex. Journal of Neurophysiology, 2005, 94, 3009-3022.	0.9	120
129	Cortical basket cell dysfunction in schizophrenia. Journal of Physiology, 2012, 590, 715-724.	1.3	119
130	Properties of Excitatory Synaptic Responses in Fast-spiking Interneurons and Pyramidal Cells from Monkey and Rat Prefrontal Cortex. Cerebral Cortex, 2006, 16, 541-552.	1.6	118
131	Interneuron Diversity in Layers 2–3 of Monkey Prefrontal Cortex. Cerebral Cortex, 2009, 19, 1597-1615.	1.6	117
132	Alterations in Metabotropic Glutamate Receptor $1\hat{l}\pm$ and Regulator of G Protein Signaling 4 in the Prefrontal Cortex in Schizophrenia. American Journal of Psychiatry, 2010, 167, 1489-1498.	4.0	117
133	Altered Cortical Expression of GABA-Related Genes in Schizophrenia: Illness Progression vs Developmental Disturbance. Schizophrenia Bulletin, 2015, 41, 180-191.	2.3	117
134	Hemispheric Differences in Layer III Pyramidal Neurons of the Anterior Language Area. Archives of Neurology, 1993, 50, 501-505.	4.9	116
135	Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cerebral Cortex, 1998, 8, 614-622.	1.6	116
136	Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex., 1998, 390, 211-224.		115
137	Lamina-Specific Alterations in Cortical GABAA Receptor Subunit Expression in Schizophrenia. Cerebral Cortex, 2011, 21, 999-1011.	1.6	115
138	Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiology of Disease, 2015, 77, 220-227.	2.1	115
139	Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophrenia Research, 1996, 19, 111-119.	1.1	114
140	Amygdala Gene Expression Correlates of Social Behavior in Monkeys Experiencing Maternal Separation. Journal of Neuroscience, 2007, 27, 3295-3304.	1.7	114
141	Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience, 2000, 101, 67-76.	1.1	112
142	Molecular Mechanisms and Timing of Cortical Immune Activation in Schizophrenia. American Journal of Psychiatry, 2015, 172, 1112-1121.	4.0	111
143	Altered Cortical Glutamate Neurotransmission in Schizophrenia. Annals of the New York Academy of Sciences, 2003, 1003, 102-112.	1.8	110
144	Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. Journal of Comparative Neurology, 2003, 465, 385-400.	0.9	110

#	Article	IF	CITATIONS
145	Dopamine Increases Inhibition in the Monkey Dorsolateral Prefrontal Cortex through Cell Type-Specific Modulation of Interneurons. Cerebral Cortex, 2006, 17, 1020-1032.	1.6	110
146	Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends in Cognitive Sciences, 2017, 21, 760-778.	4.0	110
147	Postnatal Development of Prefrontal Inhibitory Circuits and the Pathophysiology of Cognitive Dysfunction in Schizophrenia. Annals of the New York Academy of Sciences, 2004, 1021, 64-76.	1.8	109
148	Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia. Schizophrenia Bulletin, 2011, 37, 493-503.	2.3	109
149	The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Developmental Brain Research, 1996, 96, 261-276.	2.1	107
150	Parvalbumin-Positive Basket Interneurons in Monkey and Rat Prefrontal Cortex. Journal of Neurophysiology, 2008, 100, 2348-2360.	0.9	104
151	Selective Loss of Smaller Spines in Schizophrenia. American Journal of Psychiatry, 2017, 174, 586-594.	4.0	103
152	Tritiated Imipramine Binding Distinguishes Among Subtypes of Depression. Archives of General Psychiatry, 1985, 42, 485.	13.8	102
153	Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochemical Research, 2002, 27, 1049-1063.	1.6	102
154	Distinct Physiological Maturation of Parvalbumin-Positive Neuron Subtypes in Mouse Prefrontal Cortex. Journal of Neuroscience, 2017, 37, 4883-4902.	1.7	102
155	Primary visual cortex volume and total neuron number are reduced in schizophrenia. Journal of Comparative Neurology, 2007, 501, 290-301.	0.9	101
156	Altered Expression of Regulators of the Cortical Chloride Transporters NKCC1 and KCC2 in Schizophrenia. Archives of General Psychiatry, 2011, 68, 21.	13.8	101
157	Four isoforms of tyrosine hydroxylase are expressed in human brain. Neuroscience, 1993, 54, 477-492.	1.1	100
158	Altered Cortical CDC42 Signaling Pathways in Schizophrenia: Implications for Dendritic Spine Deficits. Biological Psychiatry, 2010, 68, 25-32.	0.7	99
159	Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders?. Journal of Neuroscience, 2016, 36, 11411-11417.	1.7	99
160	Serotonergic Stimulation of Adrenocorticotropin Secretion in Man*. Journal of Clinical Endocrinology and Metabolism, 1984, 58, 458-462.	1.8	97
161	Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: Volume, neuron number, and cell types. Journal of Comparative Neurology, 2004, 472, 449-462.	0.9	97
162	Genetic polymorphisms of the RGS4 and dorsolateral prefrontal cortex morphometry among first episode schizophrenia patients. Molecular Psychiatry, 2005, 10, 213-219.	4.1	97

#	Article	IF	CITATIONS
163	Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex. Journal of Comparative Neurology, 2001, 430, 209-221.	0.9	96
164	Neuropathologic Correlates of Late-Onset Major Depression. Neuropsychopharmacology, 2004, 29, 2242-2250.	2.8	96
165	Deciphering the Disease Process of Schizophrenia: The Contribution of Cortical Gaba Neurons. International Review of Neurobiology, 2007, 78, 109-131.	0.9	95
166	Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. Journal of Comparative Neurology, 2002, 448, 186-202.	0.9	92
167	P/Q-Type, But Not N-Type, Calcium Channels Mediate GABA Release From Fast-Spiking Interneurons to Pyramidal Cells in Rat Prefrontal Cortex. Journal of Neurophysiology, 2007, 97, 3567-3573.	0.9	92
168	In Vivo Measurement of GABA Transmission in Healthy Subjects and Schizophrenia Patients. American Journal of Psychiatry, 2015, 172, 1148-1159.	4.0	92
169	Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1691-1695.	3.3	91
170	Heterogeneity of layer II neurons in human entorhinal cortex. Journal of Comparative Neurology, 1992, 321, 241-266.	0.9	91
171	Cytoarchitecture of the entorhinal cortex in schizophrenia. American Journal of Psychiatry, 1997, 154, 1010-1012.	4.0	91
172	Reduced Pyramidal Cell Somal Volume in Auditory Association Cortex of Subjects with Schizophrenia. Neuropsychopharmacology, 2003, 28, 599-609.	2.8	91
173	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. American Journal of Human Genetics, 2017, 100, 885-894.	2.6	91
174	Prefrontal Cortical Circuits in Schizophrenia. Current Topics in Behavioral Neurosciences, 2010, 4, 485-508.	0.8	90
175	Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Molecular Psychiatry, 2006, 11 , 633 - 648 .	4.1	89
176	Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia. Biological Psychiatry, 2015, 78, 374-385.	0.7	89
177	Making the Case for a Candidate Vulnerability Gene in Schizophrenia: Convergent Evidence for Regulator of G-Protein Signaling 4 (RGS4). Biological Psychiatry, 2006, 60, 534-537.	0.7	88
178	Cannabinoid CB1 Receptor Immunoreactivity in the Prefrontal Cortex: Comparison of Schizophrenia and Major Depressive Disorder. Neuropsychopharmacology, 2010, 35, 2060-2071.	2.8	88
179	Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience, 2002, 114, 807-815.	1.1	87
180	Pyramidal cell size reduction in schizophrenia: evidence for involvement of auditory feedforward circuits. Biological Psychiatry, 2004, 55, 1128-1137.	0.7	87

#	Article	IF	CITATIONS
181	Evaluation of a Susceptibility Gene for Schizophrenia: Genotype Based Meta-Analysis of RGS4 Polymorphisms from Thirteen Independent Samples. Biological Psychiatry, 2006, 60, 152-162.	0.7	87
182	Parvalbumin-immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses. Journal of Comparative Neurology, 1999, 408, 11-22.	0.9	85
183	Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology, 2022, 47, 292-308.	2.8	84
184	Postsynaptic diacylglycerol lipase \hat{l}_{\pm} mediates retrograde endocannabinoid suppression of inhibition in mouse prefrontal cortex. Journal of Physiology, 2011, 589, 4857-4884.	1.3	83
185	Development of Sensory Gamma Oscillations and Cross-Frequency Coupling from Childhood to Early Adulthood. Cerebral Cortex, 2015, 25, 1509-1518.	1.6	82
186	Perisomatic inhibition and cortical circuit dysfunction in schizophrenia. Current Opinion in Neurobiology, 2011, 21, 866-872.	2.0	81
187	Altered Expression of CDC42 Signaling Pathway Components in Cortical Layer 3 Pyramidal Cells in Schizophrenia. Biological Psychiatry, 2015, 78, 775-785.	0.7	81
188	Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotoxicity Research, 2008, 14, 237-248.	1.3	80
189	Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Molecular Psychiatry, 2018, 23, 1606-1613.	4.1	80
190	Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biological Psychiatry, 2017, 81, 862-873.	0.7	78
191	Reactive Dopamine Metabolites and Neurotoxicity. Advances in Experimental Medicine and Biology, 1996, 387, 97-106.	0.8	78
192	Nonphosphorylated Neurofilament Protein and Calbindin Immunoreactivity in Layer III Pyramidal Neurons of Human Neocortex. Cerebral Cortex, 1992, 2, 56-67.	1.6	77
193	Altered Markers of Tonic Inhibition in the Dorsolateral Prefrontal Cortex of Subjects With Schizophrenia. American Journal of Psychiatry, 2009, 166, 450-459.	4.0	77
194	Conserved Interneuron-Specific ErbB4 Expression in Frontal Cortex of Rodents, Monkeys, and Humans: Implications for Schizophrenia. Biological Psychiatry, 2011, 70, 636-645.	0.7	77
195	The Future of Psychiatry as Clinical Neuroscience. Academic Medicine, 2009, 84, 446-450.	0.8	76
196	Early Developmental Disturbances of Cortical Inhibitory Neurons: Contribution to Cognitive Deficits in Schizophrenia. Schizophrenia Bulletin, 2014, 40, 952-957.	2.3	76
197	Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder. Biological Psychiatry, 2021, 90, 550-562.	0.7	76
198	Influence of age on the cortisol response to dexamethasone. Psychiatry Research, 1984, 13, 213-220.	1.7	75

#	Article	IF	Citations
199	Decreased density of tyrosine hydroxylase–immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biological Psychiatry, 2000, 47, 361-370.	0.7	75
200	Ultrastructural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area. Synapse, 2004, 52, 233-244.	0.6	75
201	Altered Expression of 14-3-3 Genes in the Prefrontal Cortex of Subjects with Schizophrenia. Neuropsychopharmacology, 2005, 30, 974-983.	2.8	7 5
202	Functional Maturation of Excitatory Synapses in Layer 3 Pyramidal Neurons during Postnatal Development of the Primate Prefrontal Cortex. Cerebral Cortex, 2008, 18, 626-637.	1.6	75
203	Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.	2.4	75
204	The Neurodevelopmental Hypothesis of Schizophrenia. Psychiatric Clinics of North America, 2012, 35, 571-584.	0.7	74
205	The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. Neuropsychopharmacology, 2016, 41, 3080-3091.	2.8	74
206	The functional architecture of the prefrontal cortex and schizophrenia. Psychological Medicine, 1995, 25, 887-894.	2.7	73
207	Serotonin 1 AReceptors at the Axon Initial Segment of Prefrontal Pyramidal Neurons in Schizophrenia. American Journal of Psychiatry, 2004, 161, 739-742.	4.0	73
208	Anatomical Evidence of Impaired Feedforward Auditory Processing in Schizophrenia. Biological Psychiatry, 2007, 61, 854-864.	0.7	73
209	Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders. Biological Psychiatry, 2017, 82, 594-600.	0.7	73
210	Alterations of Striatal Dopamine Receptor Binding in Alzheimer Disease Are Associated With Lewy Body Pathology and Antemortem Psychosis. Archives of Neurology, 2001, 58, 466-72.	4.9	72
211	Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathologica, 2009, 117, 369-384.	3.9	71
212	Selective Pyramidal Cell Reduction of GABAA Receptor $\hat{l}\pm 1$ Subunit Messenger RNA Expression in Schizophrenia. Neuropsychopharmacology, 2011, 36, 2103-2110.	2.8	71
213	Postmortem structural studies of the thalamus in schizophrenia. Schizophrenia Research, 2017, 180, 28-35.	1.1	71
214	Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex. Journal of Neuroscience, 1987, 7, $1133-1144$.	1.7	70
215	Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex. Brain Research, 1989, 500, 313-324.	1,1	70
216	Tiagabine Increases [11C]flumazenil Binding in Cortical Brain Regions in Healthy Control Subjects. Neuropsychopharmacology, 2009, 34, 624-633.	2.8	70

#	Article	IF	CITATIONS
217	The chandelier neuron in schizophrenia. Developmental Neurobiology, 2011, 71, 118-127.	1.5	70
218	Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin Expression. American Journal of Psychiatry, 2016, 173, 60-68.	4.0	70
219	Lower Expression of Glutamic Acid Decarboxylase 67 in the Prefrontal Cortex in Schizophrenia: Contribution of Altered Regulation by Zif268. American Journal of Psychiatry, 2014, 171, 969-978.	4.0	69
220	Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiology of Disease, 2015, 73, 213-219.	2.1	69
221	The Dopaminergic Innervation of Monkey Entorhinal Cortex. Cerebral Cortex, 1993, 3, 533-550.	1.6	68
222	Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: a study of calretinin-immunoreactive cells. Neuroscience Letters, 1995, 200, 9-12.	1.0	68
223	Pyramidal Neuron Local Axon Terminals in Monkey Prefrontal Cortex: Differential Targeting of Subclasses of GABA Neurons. Cerebral Cortex, 2003, 13, 452-460.	1.6	67
224	Cortical connections of the lateral mediodorsal thalamus in cynomolgus monkeys. Journal of Comparative Neurology, 2004, 473, 107-127.	0.9	65
225	It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists. Biological Psychiatry, 2008, 63, 725-727.	0.7	65
226	Selective Alterations in Postsynaptic Markers of Chandelier Cell Inputs to Cortical Pyramidal Neurons in Subjects with Schizophrenia. Neuropsychopharmacology, 2009, 34, 2112-2124.	2.8	65
227	Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience, 2010, 169, 1651-1661.	1.1	65
228	Altered Cortical GABA Neurotransmission in Schizophrenia: Insights into Novel Therapeutic Strategies. Current Pharmaceutical Biotechnology, 2012, 13, 1557-1562.	0.9	65
229	The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species. Frontiers in Psychiatry, 2013, 4, 104.	1.3	65
230	Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biological Psychiatry, 2000, 48, 389-397.	0.7	64
231	Electrophysiological Differences Between Neurogliaform Cells From Monkey and Rat Prefrontal Cortex. Journal of Neurophysiology, 2007, 97, 1030-1039.	0.9	64
232	Concurrent and Sustained Cumulative Effects of Adolescent Marijuana Use on Subclinical Psychotic Symptoms. American Journal of Psychiatry, 2016, 173, 781-789.	4.0	63
233	Tritiated imipramine binding to platelets is decreased in patients with agoraphobia. Psychiatry Research, 1985, 16, 1-9.	1.7	62
234	The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia. Reviews in the Neurosciences, 2012, 23, 97-109.	1.4	62

#	Article	IF	CITATIONS
235	Dendritic Spine Density in Schizophrenia and Depression. Archives of General Psychiatry, 2001, 58, 203-203.	13.8	62
236	Differential laminar distribution of tyrosine hydroxylase-immunoreactive axons in infant and adult monkey prefrontal cortex. Neuroscience Letters, 1991, 125, 151-154.	1.0	61
237	SERT-ainly Involved in Depression, But When?. American Journal of Psychiatry, 2006, 163, 8-11.	4.0	61
238	Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. Journal of Neurophysiology, 2012, 108, 595-609.	0.9	61
239	Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2015, 25, 4076-4093.	1.6	61
240	Serotonergic regulation of prolactin and growth hormone secretion in man. European Journal of Endocrinology, 1985, 110, 152-157.	1.9	60
241	Distribution of choline acetyltransferase-immunoreactive axons in monkey frontal cortex. Neuroscience, 1991, 40, 363-374.	1.1	58
242	The Role of the Nuclear Factor-κB Transcriptional Complex in Cortical Immune Activation in Schizophrenia. Biological Psychiatry, 2019, 85, 25-34.	0.7	58
243	The monoaminergic innervation of primate neocortex. Human Neurobiology, 1986, 5, 181-8.	0.6	58
244	Corticotropin-releasing factor immunoreactivity in monkey neocortex: An immunohistochemical analysis. Journal of Comparative Neurology, 1989, 290, 599-613.	0.9	57
245	Magnopyramidal Neurons in the Anterior Motor Speech Region. Archives of Neurology, 1996, 53, 1277.	4.9	57
246	Dopamine Axons in Primate Prefrontal Cortex: Specificity of Distribution, Synaptic Targets, and Development. Advances in Pharmacology, 1997, 42, 703-706.	1.2	57
247	Dendriticâ€targeting GABA neurons in monkey prefrontal cortex: Comparison of somatostatin―and calretinin―mmunoreactive axon terminals. Synapse, 2008, 62, 456-465.	0.6	57
248	The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. Journal of Neuroscience, 2018, 38, 1335-1350.	1.7	57
249	Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells. PLoS ONE, 2013, 8, e70553.	1.1	57
250	Anatomical Specialization of the Anterior Motor Speech Area: Hemispheric Differences in Magnopyramidal Neurons. Brain and Language, 1995, 49, 289-308.	0.8	56
251	Molecular and Genetic Characterization of Depression: Overlap with Other Psychiatric Disorders and Aging. Molecular Neuropsychiatry, $2015, 1, 1-12$.	3.0	56
252	Altered Glutamate Protein Co-Expression Network Topology Linked to Spine Loss in the Auditory Cortex of Schizophrenia. Biological Psychiatry, 2015, 77, 959-968.	0.7	56

#	Article	IF	Citations
253	Somal size of prefrontal cortical pyramidal neurons in schizophrenia. Biological Psychiatry, 2003, 54, 111-120.	0.7	55
254	Parvalbumin-Containing Chandelier and Basket Cell Boutons Have Distinctive Modes of Maturation in Monkey Prefrontal Cortex. Journal of Neuroscience, 2013, 33, 8352-8358.	1.7	55
255	Repeated Δ ⁹ -Tetrahydrocannabinol Exposure in Adolescent Monkeys: Persistent Effects Selective for Spatial Working Memory. American Journal of Psychiatry, 2014, 171, 416-425.	4.0	55
256	Light and electron microscopic observations on the synovitis of reiter's disease. Arthritis and Rheumatism, 1966, 9, 747-757.	6.7	53
257	The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Research, 2003, 972, 16-30.	1.1	53
258	Pyramidal neuron number in layer 3 of primary auditory cortex of subjects with schizophrenia. Brain Research, 2009, 1285, 42-57.	1.1	53
259	Anticipated Brain Molecular Aging in Major Depression. American Journal of Geriatric Psychiatry, 2013, 21, 450-460.	0.6	53
260	The Role of Endocannabinoid Signaling in Cortical Inhibitory Neuron Dysfunction in Schizophrenia. Biological Psychiatry, 2016, 79, 595-603.	0.7	53
261	Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex. Experimental Neurology, 1992, 115, 239-249.	2.0	52
262	Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex. European Journal of Neuroscience, 2007, 25, 1843-1854.	1.2	52
263	Protein kinases A and C in post-mortem prefrontal cortex from persons with major depression and normal controls. International Journal of Neuropsychopharmacology, 2009, 12, 1223.	1.0	52
264	Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. Journal of Comparative Neurology, 2009, 514, 353-367.	0.9	52
265	Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: Implications for schizophrenia. Neurobiology of Disease, 2013, 50, 179-186.	2.1	52
266	Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophrenia Research, 2014, 159, 124-129.	1.1	52
267	Developmental Expression Patterns of GABA _A Receptor Subunits in Layer 3 and 5 Pyramidal Cells of Monkey Prefrontal Cortex. Cerebral Cortex, 2015, 25, 2295-2305.	1.6	52
268	Specificity in the functional architecture of primate prefrontal cortex. Journal of Neurocytology, 2002, 31, 265-276.	1.6	51
269	Development of Cannabinoid 1 Receptor Protein and Messenger RNA in Monkey Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2010, 20, 1164-1174.	1.6	51
270	Synaptic Efficacy during Repetitive Activation of Excitatory Inputs in Primate Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2004, 14, 530-542.	1.6	50

#	Article	IF	CITATIONS
271	Platform influence on DNA microarray data in postmortem brain research. Neurobiology of Disease, 2005, 18, 649-655.	2.1	50
272	Selective reduction by dopamine of excitatory synaptic inputs to pyramidal neurons in primate prefrontal cortex. Journal of Physiology, 2002, 539, 707-712.	1.3	49
273	Prenatal ontogeny as a susceptibility period for cortical GABA neuron disturbances in schizophrenia. Neuroscience, 2013, 248, 154-164.	1.1	49
274	Lower Gene Expression for KCNS3 Potassium Channel Subunit in Parvalbumin-Containing Neurons in the Prefrontal Cortex in Schizophrenia. American Journal of Psychiatry, 2014, 171, 62-71.	4.0	49
275	Baseline brain function in the preadolescents of the ABCD Study. Nature Neuroscience, 2021, 24, 1176-1186.	7.1	48
276	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	5.8	48
277	Is There a Neuropathology of Schizophrenia? Recent Findings Converge on Altered Thalamic-Prefrontal Cortical Connectivity. Neuroscientist, 2000, 6, 208-218.	2.6	47
278	Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biological Psychiatry, 2018, 83, 670-679.	0.7	47
279	The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression. Biological Psychiatry, 2019, 85, 517-526.	0.7	47
280	Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex. Neuroscience, 2005, 130, 185-195.	1.1	46
281	Subcortical afferents to the lateral mediodorsal thalamus in cynomolgus monkeys. Neuroscience, 2004, 129, 675-690.	1.1	45
282	Differential Distribution of Proteins Regulating GABA Synthesis and Reuptake in Axon Boutons of Subpopulations of Cortical Interneurons. Cerebral Cortex, 2011, 21, 2450-2460.	1.6	45
283	Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia. Biological Psychiatry, 2016, 79, 1006-1015.	0.7	45
284	Dopaminergic Modulation of Short-Term Synaptic Plasticity in Fast-Spiking Interneurons of Primate Dorsolateral Prefrontal Cortex. Journal of Neurophysiology, 2005, 94, 4168-4177.	0.9	44
285	Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. International Journal of Developmental Neuroscience, 2011, 29, 295-304.	0.7	44
286	Increased expression of Kalirin-9 in the auditory cortex of schizophrenia subjects: Its role in dendritic pathology. Neurobiology of Disease, 2012, 45, 796-803.	2.1	44
287	Mapping pathologic circuitry in schizophrenia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 389-417.	1.0	44
288	Dendritic morphology of callosal and ipsilateral projection neurons in monkey prefrontal cortex. Neuroscience, 2002, 109, 461-471.	1.1	43

#	Article	IF	CITATIONS
289	Cortical Opioid Markers in Schizophrenia and across Postnatal Development. Cerebral Cortex, 2012, 22, 1215-1223.	1.6	43
290	Lower Glutamic Acid Decarboxylase 65-kDa Isoform Messenger RNA and Protein Levels in the Prefrontal Cortex in Schizoaffective Disorder but Not Schizophrenia. Biological Psychiatry, 2015, 77, 167-176.	0.7	43
291	Regional specificity of chandelier neuron axon terminal alterations in schizophrenia. Neuroscience, 2006, 138, 189-196.	1.1	42
292	Infragranular gene expression disturbances in the prefrontal cortex in schizophrenia: Signature of altered neural development?. Neurobiology of Disease, 2010, 37, 738-746.	2.1	42
293	Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders. Psychological Medicine, 2016, 46, 2501-2512.	2.7	42
294	Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. Journal of Physiology, 2007, 581, 981-1000.	1.3	41
295	DNA methylation age is not accelerated in brain or blood of subjects with schizophrenia. Schizophrenia Research, 2018, 196, 39-44.	1.1	41
296	A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology, 2019, 150, 46-58.	2.0	41
297	The distribution of tyrosine hydroxylase-immunoreactive fibers in the human entorhinal cortex. Neuroscience, 1994, 60, 857-874.	1.1	40
298	An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Research, 2008, 1240, 62-72.	1.1	40
299	Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia. Biological Psychiatry, 2012, 72, 734-743.	0.7	40
300	Parvalbumin-immunoreactive axon terminals in macaque monkey and human prefrontal cortex: laminar, regional, and target specificity of type I and type II synapses. Journal of Comparative Neurology, 1999, 408, 11-22.	0.9	40
301	Heat shock protein 12A shows reduced expression in the prefrontal cortex of subjects with schizophrenia. Biological Psychiatry, 2004, 56, 943-950.	0.7	39
302	Decrease in somatostatin-positive cell density in the amygdala of females with major depression. Depression and Anxiety, 2017, 34, 68-78.	2.0	39
303	GABA and schizophrenia: Where we stand and where we need to go. Schizophrenia Research, 2017, 181, 2-3.	1.1	39
304	Antipsychotic Medications and Brain Volume. Archives of General Psychiatry, 2011, 68, 126.	13.8	38
305	Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E629-E637.	3.3	38
306	Systems Analysis of the 22q11.2 Microdeletion Syndrome Converges on a Mitochondrial Interactome Necessary for Synapse Function and Behavior. Journal of Neuroscience, 2019, 39, 1983-18.	1.7	38

#	Article	IF	CITATIONS
307	Altered Gene Synchrony Suggests a Combined Hormone-Mediated Dysregulated State in Major Depression. PLoS ONE, 2010, 5, e9970.	1.1	38
308	[11C]flumazenil Binding Is Increased in a Dose-Dependent Manner with Tiagabine-Induced Elevations in GABA Levels. PLoS ONE, 2012, 7, e32443.	1.1	37
309	A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Human Molecular Genetics, 2014, 23, 4801-4813.	1.4	37
310	Altered Markers of Cortical \hat{I}^3 -Aminobutyric Acid Neuronal Activity in Schizophrenia. JAMA Psychiatry, 2015, 72, 747.	6.0	37
311	Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. Journal of Neuroscience, 2019, 39, 7277-7290.	1.7	37
312	Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues in Clinical Neuroscience, 2009, 11, 269-280.	1.8	37
313	Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Research, 1994, 656, 1-13.	1.1	36
314	Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophrenia Research, 2016, 177, 3-9.	1.1	36
315	DNA methylation evidence against the accelerated aging hypothesis of schizophrenia. NPJ Schizophrenia, 2017, 3, 13.	2.0	36
316	Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology, 2018, 43, 2478-2486.	2.8	36
317	Expression of Transcripts Selective for GABA Neuron Subpopulations across the Cortical Visuospatial Working Memory Network in the Healthy State and Schizophrenia. Cerebral Cortex, 2019, 29, 3540-3550.	1.6	36
318	The catecholaminergic innervation of primate prefrontal cortex., 1992, 36, 179-200.		36
319	Postnatal development of tyrosine hydroxylase- and dopamine transporter- immunoreactive axons in monkey rostral entorhinal cortex. Cerebral Cortex, 1998, 8, 415-427.	1.6	35
320	GABA Transporter GAT1 Prevents Spillover at Proximal and Distal GABA Synapses Onto Primate Prefrontal Cortex Neurons. Journal of Neurophysiology, 2009, 101, 533-547.	0.9	35
321	Cholinergic modulation of neuronal excitability and recurrent excitationâ€inhibition in prefrontal cortex circuits: implications for gamma oscillations. Journal of Physiology, 2013, 591, 4725-4748.	1.3	35
322	Elevated Viral Restriction Factor Levels in Cortical Blood Vessels in Schizophrenia. Biological Psychiatry, 2014, 76, 160-167.	0.7	35
323	Differentiation of Depressive Subtypes by Insulin Insensitivity in the Recovered Phase. Archives of General Psychiatry, 1983, 40, 167.	13.8	34
324	Genes and subtypes of schizophrenia. Trends in Molecular Medicine, 2001, 7, 281-283.	3.5	34

#	Article	IF	CITATION
325	Dopamine modulation of neuronal function in the monkey prefrontal cortex. Physiology and Behavior, 2002, 77, 537-543.	1.0	34
326	Linkage Disequilibrium Patterns and Functional Analysis of RGS4 Polymorphisms in Relation to Schizophrenia. Schizophrenia Bulletin, 2007, 34, 118-126.	2.3	34
327	Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology, 2012, 62, 1598-1605.	2.0	34
328	Cognitive Dysfunction and Prefrontal Cortical Circuit Alterations in Schizophrenia: Developmental Trajectories. Biological Psychiatry, 2022, 92, 450-459.	0.7	34
329	GABA Targets for the Treatment of Cognitive Dysfunction in Schizophrenia. Current Neuropharmacology, 2005, 3, 45-62.	1.4	33
330	BDNF Val66Met Polymorphism and GAD67mRNA Expression in the Prefrontal Cortex of Subjects With Schizophrenia. American Journal of Psychiatry, 2006, 163, 534-537.	4.0	33
331	Alterations in a Unique Class of Cortical Chandelier Cell Axon Cartridges in Schizophrenia. Biological Psychiatry, 2017, 82, 40-48.	0.7	33
332	Altered Expression of ARP2/3 Complex Signaling Pathway Genes in Prefrontal Layer 3 Pyramidal Cells in Schizophrenia. American Journal of Psychiatry, 2017, 174, 163-171.	4.0	33
333	Sustained Molecular Pathology Across Episodes and Remission in Major Depressive Disorder. Biological Psychiatry, 2018, 83, 81-89.	0.7	33
334	Synaptic Proteome Alterations in the Primary Auditory Cortex of Individuals With Schizophrenia. JAMA Psychiatry, 2020, 77, 86.	6.0	33
335	Analysis of the Specificity of Physostigmine Stimulation of Adrenocorticotropin in Man*. Journal of Clinical Endocrinology and Metabolism, 1984, 58, 570-573.	1.8	32
336	Neural Circuitry of the Prefrontal Cortex in Schizophrenia. Archives of General Psychiatry, 1995, 52, 269.	13.8	32
337	Endocannabinoid metabolism in the prefrontal cortex in schizophrenia. Schizophrenia Research, 2013, 147, 53-57.	1.1	32
338	Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 2020, 177, 1140-1150.	4.0	32
339	Functional annotation of rare structural variation in the human brain. Nature Communications, 2020, 11, 2990.	5.8	32
340	Effects of D2 dopamine receptor antagonists on fos protein expression in the striatal complex and entorhinal cortex of the nonhuman primate., 1996, 23, 182-191.		31
341	Dopamine and the neural circuitry of primate prefrontal cortex: implications for schizophrenia research. Neuropsychopharmacology, 1992, 6, 127-34.	2.8	31
342	[3H]Cortivazol: A Unique High Affinity Ligand for the Glucocorticoid Receptor*. Endocrinology, 1985, 117, 1355-1362.	1.4	30

#	Article	IF	CITATIONS
343	Postnatal development of the cholecystokinin innervation of monkey prefrontal cortex. Journal of Comparative Neurology, 1993, 336, 400-418.	0.9	30
344	NPY mRNA expression in the prefrontal cortex: Selective reduction in the superficial white matter of subjects with schizoaffective disorder. Schizophrenia Research, 2009, 115, 261-269.	1.1	30
345	GABA-Synthesizing Enzymes in Calbindin and Calretinin Neurons in Monkey Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2191-2204.	1.6	30
346	Selective Expression of KCNS3 Potassium Channel \hat{l}_{\pm} -Subunit in Parvalbumin-Containing GABA Neurons in the Human Prefrontal Cortex. PLoS ONE, 2012, 7, e43904.	1.1	30
347	Retroviruses and the pathogenesis of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4293-4294.	3.3	29
348	DNA microarray profiling of developing PS1-deficient mouse brain reveals complex and coregulated expression changes. Molecular Psychiatry, 2003, 8, 863-878.	4.1	29
349	Transcriptome alterations in the prefrontal cortex of subjects with schizophrenia who committed suicide. Neuropsychopharmacologia Hungarica, 2008, 10, 9-14.	0.1	29
350	Chemokine receptors and cortical interneuron dysfunction in schizophrenia. Schizophrenia Research, 2015, 167, 12-17.	1.1	28
351	DNA methylation as a putative mechanism for reduced dendritic spine density in the superior temporal gyrus of subjects with schizophrenia. Translational Psychiatry, 2017, 7, e1032-e1032.	2.4	28
352	Presynaptic Effects of N-Methyl-D-Aspartate Receptors Enhance Parvalbumin Cell–Mediated Inhibition of Pyramidal Cells in Mouse Prefrontal Cortex. Biological Psychiatry, 2018, 84, 460-470.	0.7	28
353	Brainstem dopaminergic neurons project to monkey parietal cortex. Neuroscience Letters, 1988, 86, 11-16.	1.0	27
354	A comparative analysis of the distribution of prosomatostatin-derived peptides in human and monkey neocortex. Journal of Comparative Neurology, 1991, 303, 584-599.	0.9	27
355	Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia. Frontiers in Human Neuroscience, 2010, 4, 44.	1.0	27
356	Adenylate Cyclase 7 Is Implicated in the Biology of Depression and Modulation of Affective Neural Circuitry. Biological Psychiatry, 2012, 71, 627-632.	0.7	27
357	Density of small dendritic spines and microtubule-associated-protein-2 immunoreactivity in the primary auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 2019, 44, 1055-1061.	2.8	27
358	Diurnal rhythms across the human dorsal and ventral striatum. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
359	Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Molecular Psychiatry, 2021, 26, 986-998.	4.1	26
360	Postnatal development of parvalbumin immunoreactivity in axon terminals op basket and chandelier neurons in monkey neocortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1992, 16, 329-337.	2.5	25

#	Article	IF	CITATIONS
361	Effects of partial dopamine loss in the medial prefrontal cortex on local baseline and stress-evoked extracellular dopamine concentrations. Neuroscience, 1999, 93, 497-505.	1.1	25
362	GluN2D-mediated excitatory drive onto medial prefrontal cortical PV+ fast-spiking inhibitory interneurons. PLoS ONE, 2020, 15, e0233895.	1.1	25
363	Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nature Neuroscience, 2022, 25, 474-483.	7.1	25
364	Differential Distribution of Corticotropin-Releasing Hormone Immunoreactive Axons in Monoaminergic Nuclei of the Human Brainstem. Neuropsychopharmacology, 1997, 17, 326-341.	2.8	24
365	Cortical dopamine in schizophrenia: Strategies for postmortem studies. Journal of Psychiatric Research, 1997, 31, 175-195.	1.5	24
366	Dopamine transporter-immunoreactive axons in the mediodorsal thalamic nucleus of the macaque monkey. Neuroscience, 2001, 103, 1033-1042.	1.1	24
367	Analysis of pyramidal neuron morphology in an inducible knockout of brain-derived neurotrophic factor. Biological Psychiatry, 2005, 57, 932-934.	0.7	24
368	A human-mouse conserved sex bias in amygdala gene expression related to circadian clock and energy metabolism. Molecular Brain, 2011, 4, 18.	1.3	24
369	Hypermethylation of BDNF and SST Genes in the Orbital Frontal Cortex of Older Individuals: A Putative Mechanism for Declining Gene Expression with Age. Neuropsychopharmacology, 2015, 40, 2604-2613.	2.8	24
370	Cholecystokinin innervation of monkey prefrontal cortex: An immunohistochemical study. Journal of Comparative Neurology, 1990, 301, 123-137.	0.9	23
371	A monoclonal antibody to tryptophan hydroxylase: applications and identification of the epitope. Journal of Neuroscience Methods, 2002, 114, 205-212.	1.3	23
372	Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: implications for schizophrenia. Biological Psychiatry, 2003, 53, 385-389.	0.7	23
373	DNA Microarray Analysis of Postmortem Brain Tissue. International Review of Neurobiology, 2004, 60, 153-181.	0.9	23
374	Intracortical excitatory and thalamocortical boutons are intact in primary auditory cortex in schizophrenia. Schizophrenia Research, 2013, 149, 127-134.	1.1	23
375	Can a Framework Be Established for the Safe Use of Ketamine?. American Journal of Psychiatry, 2018, 175, 587-589.	4.0	23
376	Older molecular brain age in severe mental illness. Molecular Psychiatry, 2021, 26, 3646-3656.	4.1	23
377	Oxytocin Does Not Influence Adrenocorticotropin Secretion in Man. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 53-56.	1.8	22
378	Cholecystokinin- and dopamine-containing mesencephalic neurons provide distinct projections to monkey prefrontal cortex. Neuroscience Letters, 1992, 145, 87-92.	1.0	22

#	Article	IF	CITATIONS
379	Dopamine innervation of monkey entorhinal cortex: Postsynaptic targets of tyrosine hydroxylase-immunoreactive terminals., 2000, 36, 47-56.		22
380	Cortical Inhibitory Neuron Disturbances in Schizophrenia: Role of the Ontogenetic Transcription Factor Lhx6. Schizophrenia Bulletin, 2014, 40, 1053-1061.	2.3	22
381	Laminar Distribution of Subsets of GABAergic Axon Terminals in Human Prefrontal Cortex. Frontiers in Neuroanatomy, 2018, 12, 9.	0.9	22
382	Proxy measures of premortem cognitive aptitude in postmortem subjects with schizophrenia. Psychological Medicine, 2020, 50, 507-514.	2.7	22
383	Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomarkers in Neuropsychiatry, 2020, 3, 100015.	0.7	22
384	Molecular characterization of depression trait and state. Molecular Psychiatry, 2022, 27, 1083-1094.	4.1	22
385	Neuronal localization of tyrosine hydroxylase gene products in human neocortex. Molecular and Cellular Neurosciences, 1991, 2, 228-234.	1.0	21
386	Atypical Antipsychotic Medications and the Treatment of Schizophrenia. American Journal of Psychiatry, 2002, 159, 177-179.	4.0	21
387	Delay- and Dose-Dependent Effects of î"9-Tetrahydrocannabinol Administration on Spatial and Object Working Memory Tasks in Adolescent Rhesus Monkeys. Neuropsychopharmacology, 2012, 37, 1357-1366.	2.8	21
388	Inhibition and Timing in Cortical Neural Circuits. American Journal of Psychiatry, 2007, 164, 12-12.	4.0	20
389	Acquisition and baseline performance of working memory tasks by adolescent rhesus monkeys. Brain Research, 2011, 1378, 91-104.	1.1	20
390	Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophrenia Research, 2020, 217, 86-94.	1.1	20
391	Vesicular glutamate transporter modulates sex differences in dopamine neuron vulnerability to ageâ€related neurodegeneration. Aging Cell, 2021, 20, e13365.	3.0	20
392	Schizophrenia and Disordered Neural Circuitry. Schizophrenia Bulletin, 1997, 23, 529-531.	2.3	19
393	Can RGS4 Polymorphisms Be Viewed as Credible Risk Factors for Schizophrenia? A Critical Review of the Evidence. Schizophrenia Bulletin, 2006, 32, 203-208.	2.3	19
394	Cortical Glutamic Acid Decarboxylase 67 Deficiency Results in Lower Cannabinoid 1 Receptor Messenger RNA Expression: Implications for Schizophrenia. Biological Psychiatry, 2012, 71, 114-119.	0.7	19
395	Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons. Schizophrenia Bulletin, 2016, 42, 992-1002.	2.3	19
396	Synaptic Variability and Cortical Gamma Oscillation Power in Schizophrenia. American Journal of Psychiatry, 2022, 179, 277-287.	4.0	19

#	Article	IF	CITATIONS
397	Properties of LTP induction in the CA3 region of the primate hippocampus Learning and Memory, 1996, 3, 86-95.	0.5	18
398	Fineâ€mapping reveals novel alternative splicing of the dopamine transporter. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1434-1447.	1.1	18
399	Functional properties and shortâ€term dynamics of unidirectional and reciprocal synaptic connections between layer 2/3 pyramidal cells and fastâ€spiking interneurons in juvenile rat prefrontal cortex. European Journal of Neuroscience, 2013, 38, 2988-2998.	1.2	18
400	BICC1 Expression is Elevated in Depressed Subjects and Contributes to Depressive Behavior in Rodents. Neuropsychopharmacology, 2015, 40, 711-718.	2.8	18
401	Factors Affecting Ultrastructural Quality in the Prefrontal Cortex of the Postmortem Human Brain. Journal of Histochemistry and Cytochemistry, 2019, 67, 185-202.	1.3	18
402	Are digital interventions effective in reducing suicidal ideation and self-harm? A systematic review. Journal of Mental Health, 2020, 29, 207-216.	1.0	18
403	Similarities in Cortical Transcriptome Alterations Between Schizophrenia and Bipolar Disorder Are Related to the Presence of Psychosis. Schizophrenia Bulletin, 2021, 47, 1442-1451.	2.3	18
404	Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. Journal of Neuroscience, 2021, 41, 6596-6616.	1.7	18
405	Dopamine innervation of the monkey mediodorsal thalamus: Location of projection neurons and ultrastructural characteristics of axon terminals. Neuroscience, 2006, 143, 1021-1030.	1.1	17
406	Transcriptome alterations in schizophrenia: disturbing the functional architecture of the dorsolateral prefrontal cortex. Progress in Brain Research, 2006, 158, 141-152.	0.9	17
407	Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 396-405.	2.3	17
408	Cell Type- and Layer-Specific Muscarinic Potentiation of Excitatory Synaptic Drive onto Parvalbumin Neurons in Mouse Prefrontal Cortex. ENeuro, 2018, 5, ENEURO.0208-18.2018.	0.9	17
409	Chandelier cells: shedding light on altered cortical circuitry in schizophrenia. Molecular Psychiatry, 1998, 3, 468-471.	4.1	16
410	The Human Genome: Gene Expression Profiling and Schizophrenia. American Journal of Psychiatry, 2001, 158, 1384-1384.	4.0	16
411	DNA pooling: a comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia. Genes, Brain and Behavior, 2007, 6, 229-239.	1.1	16
412	DNA methylation in the human frontal cortex reveals a putative mechanism for age-by-disease interactions. Translational Psychiatry, 2019, 9, 39.	2.4	16
413	Digitally Delivered Psychological Interventions for Anxiety Disorders: a Comprehensive Review. Psychiatric Quarterly, 2019, 90, 197-215.	1.1	16
414	Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biological Psychiatry, 2021, 90, 47-57.	0.7	16

#	Article	IF	CITATIONS
415	In Pursuit of the Pathogenesis and Pathophysiology of Schizophrenia: Where Do We Stand?. American Journal of Psychiatry, 2002, 159, 1467-1469.	4.0	15
416	Maternal deprivation alters expression of neural maturation gene <i>tbr1</i> in the amygdala paralaminar nucleus in infant female macaques. Developmental Psychobiology, 2017, 59, 235-249.	0.9	15
417	Dexamethasone suppression, protirelin stimulation, and insulin infusion in subtypes of recovered depressive patients. Psychiatry Research, 1983, 9, 99-106.	1.7	14
418	Somal Size of Immunolabeled Pyramidal Cells in the Prefrontal Cortex of Subjects with Schizophrenia. Biological Psychiatry, 2006, 60, 226-234.	0.7	14
419	PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects. PLoS ONE, 2013, 8, e59458.	1.1	14
420	Longitudinal Interdisciplinary Neuroscience Curriculum. Academic Psychiatry, 2014, 38, 163-167.	0.4	14
421	Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Frontiers in Neuroanatomy, 2020, 14, 578483.	0.9	14
422	Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder. Translational Psychiatry, 2022, 12, 123.	2.4	14
423	Impact of religious affiliation on therapists' judgments of patients Journal of Consulting and Clinical Psychology, 1985, 53, 926-932.	1.6	13
424	Tritiated imipramine binding to platelets in manic subjects. Journal of Affective Disorders, 1985, 9, 207-211.	2.0	13
425	Large-scale estimates of cellular origins of mRNAs: Enhancing the yield of transcriptome analyses. Journal of Neuroscience Methods, 2008, 167, 198-206.	1.3	13
426	Conflict of Interestâ€" An Issue for Every Psychiatrist. American Journal of Psychiatry, 2009, 166, 274-274.	4.0	13
427	MAP2 is differentially phosphorylated in schizophrenia, altering its function. Molecular Psychiatry, 2021, 26, 5371-5388.	4.1	13
428	Transcriptome alterations are enriched for synapse-associated genes in the striatum of subjects with obsessive-compulsive disorder. Translational Psychiatry, 2021, 11, 171.	2.4	13
429	Induction of colon mucosal \hat{l}^2 -glucuronidase production as a mechanism for 1,2-dimethylhydrazine colon carcinogenesis. Journal of Surgical Oncology, 1983, 24, 209-211.	0.8	12
430	The familial classification of primary unipolar depression: Biological validation of distinct subtypes. Comprehensive Psychiatry, 1983, 24, 495-501.	1.5	12
431	Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. Journal of Comparative Neurology, 2017, 525, 2075-2089.	0.9	12
432	Impact of religious affiliation on therapists' judgments of patients. Journal of Consulting and Clinical Psychology, 1985, 53, 926-32.	1.6	12

#	Article	IF	CITATIONS
433	Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex. Journal of Neurophysiology, 2015, 113, 1850-1861.	0.9	11
434	Laser capture microdissection–targeted mass spectrometry: a method for multiplexed protein quantification within individual layers of the cerebral cortex. Neuropsychopharmacology, 2019, 44, 743-748.	2.8	11
435	<i>The American Journal of Psychiatry</i> i>'s Commitment to Combat Racism, Social Injustice, and Health Care Inequities. American Journal of Psychiatry, 2020, 177, 791-791.	4.0	11
436	Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cerebral Cortex, 2021, 31, 2345-2363.	1.6	11
437	Involvement of the nuclear factor-leb transcriptional complex in prefrontal cortex immune activation in bipolar disorder. Translational Psychiatry, 2021, 11, 40.	2.4	11
438	The organization of chemically-identified neural systems in monkey prefrontal cortex: Afferent systems. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1990, 14, 371-377.	2.5	10
439	Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. Nebraska Symposium on Motivation, 2016, 63, 31-75.	0.9	10
440	MAP2 immunoreactivity deficit is conserved across the cerebral cortex within individuals with schizophrenia. NPJ Schizophrenia, 2019, 5, 13.	2.0	10
441	Unrecognized Chronic Lithium Neurotoxic Reactions. JAMA - Journal of the American Medical Association, 1983, 250, 2029.	3.8	9
442	Brain volume changes in schizophrenia: how do they arise? what do they mean?. Psychological Medicine, 2009, 39, 1779-1780.	2.7	8
443	Adjusting for matching and covariates in linear discriminant analysis. Biostatistics, 2013, 14, 779-791.	0.9	8
444	l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia. Trends in Neurosciences, 2016, 39, 797-798.	4.2	8
445	Are Digitally Delivered Psychological Interventions for Depression the Way Forward? A Review. Psychiatric Quarterly, 2018, 89, 779-794.	1.1	8
446	Development of transcripts regulating dendritic spines in layer 3 pyramidal cells of the monkey prefrontal cortex: Implications for the pathogenesis of schizophrenia. Neurobiology of Disease, 2017, 105, 132-141.	2.1	8
447	Axon terminals of the chandelier class of cortical GABA neurons. Molecular Psychiatry, 1998, 3, 466-467.	4.1	7
448	Delineating Novel Signature Patterns of Altered Gene Expression in Schizophrenia Using Gene Microarrays. Scientific World Journal, The, 2001, 1, 114-116.	0.8	7
449	Structure of the Human Prefrontal Cortex. American Journal of Psychiatry, 2004, 161, 1366-1366.	4.0	7
450	Using Peer Review to Improve Research and Promote Collaboration. Academic Psychiatry, 2014, 38, 5-10.	0.4	7

#	Article	IF	CITATIONS
451	Digital Interventions for PTSD Symptoms in the General Population: a Review. Psychiatric Quarterly, 2020, 91, 929-947.	1.1	7
452	Comparative Pathway Integrator: A Framework of Meta-Analytic Integration of Multiple Transcriptomic Studies for Consensual and Differential Pathway Analysis. Genes, 2020, 11, 696.	1.0	7
453	Provocative endocrine testing in recovered depressives. Psychoneuroendocrinology, 1984, 9, 57-67.	1.3	6
454	Clinical Perspectives on Neuropeptides. Annual Review of Medicine, 1987, 38, 143-148.	5.0	6
455	Human anterior pituitary response to exogenous arginine vasopressin. European Journal of Endocrinology, 1991, 125, 378-384.	1.9	6
456	Pharmacological Enhancement of Cognition in Individuals with Schizophrenia. Biological Psychiatry, 2011, 69, 397-398.	0.7	6
457	2012 in Review. American Journal of Psychiatry, 2012, 169, 1233-1237.	4.0	6
458	Recovery from impaired working memory performance during chronic î"-9-tetrahydrocannabinol administration to adolescent rhesus monkeys. Journal of Psychopharmacology, 2020, 34, 211-220.	2.0	6
459	Conflict of interest. American Journal of Psychiatry, 2006, 163, 571-3.	4.0	6
460	Cell type specific cannabinoid CB1 receptor distribution across the human and non-human primate cortex. Scientific Reports, 2022, 12 , .	1.6	6
461	Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex. Neuroscience, 2021, 452, 181-191.	1.1	5
462	Kcns3 deficiency disrupts Parvalbumin neuron physiology in mouse prefrontal cortex: Implications for the pathophysiology of schizophrenia. Neurobiology of Disease, 2021, 155, 105382.	2.1	5
463	Postnatal Development of Glutamate and GABA Transcript Expression in Monkey Visual, Parietal, and Prefrontal Cortices. Cerebral Cortex, 2021, 31, 2026-2037.	1.6	5
464	Glucose stimulated release of gastric inhibitory polypeptide from hamster small intestine: An in vitro model. Life Sciences, 1979, 25, 673-678.	2.0	4
465	Axosomatic input to subpopulations of cortically projecting pyramidal neurons in primate prefrontal cortex. Synapse, 1997, 25, 326-334.	0.6	4
466	DNA self-polymers as microarray probes improve assay sensitivity. Journal of Neuroscience Methods, 2006, 151, 216-223.	1.3	4
467	Histological Characterization of Physiologically Determined Fast-Spiking Interneurons in Slices of Primate Dorsolateral Prefrontal Cortex. Neuromethods, 2012, , 159-181.	0.2	4
468	Insights Into the Pathophysiology of Endocannabinoid Signaling in Schizophrenia. JAMA Psychiatry, 2019, 76, 887.	6.0	4

#	Article	IF	CITATIONS
469	Differential gene expression between callosal and ipsilateral projection neurons in the monkey dorsolateral prefrontal and posterior parietal cortices. Cerebral Cortex, 2023, 33, 1581-1594.	1.6	4
470	Neural Networks. American Journal of Psychiatry, 2000, 157, 1752-1752.	4.0	3
471	Gene expression changes in schizophrenia: how do they arise and what do they mean?. Clinical Neuroscience Research, 2005, 5, 15-21.	0.8	3
472	Taking the First Step. Schizophrenia Bulletin, 2010, 36, 895-899.	2.3	3
473	2014 in Review. American Journal of Psychiatry, 2014, 171, 1243-1247.	4.0	3
474	Developing a Clinician Educator Faculty Development Program: Lessons Learned. Academic Psychiatry, 2017, 41, 417-422.	0.4	3
475	Lower Levels of GABAergic Function Markers in Corticotropin-Releasing Hormone-Expressing Neurons in the sgACC of Human Subjects With Depression. Frontiers in Psychiatry, 2022, 13, 827972.	1.3	3
476	CONSIDERATIONS ON THE RECIPROCAL INFLUENCE OF THE PHYSICAL ORGANIZATION AND MENTAL MANIFESTATIONS. American Journal of Psychiatry, 1856, 13, 1-13.	4.0	2
477	Pretherapy Information, Counselor Influence, and Value Similarity: Impact on Female Clients' Reactions. Counseling and Values, 1984, 29, 151-163.	0.6	2
478	Validating Novel Targets for Pharmacological Interventions in Schizophrenia. American Journal of Psychiatry, 2009, 166, 753-756.	4.0	2
479	2010 in Review. American Journal of Psychiatry, 2010, 167, 1431-1434.	4.0	2
480	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	0.7	2
481	Searching for the "final proof―of schizophrenia. Schizophrenia Research, 2022, 242, 78-80.	1.1	2
482	Schizophrenia: What's Under the Microscope?. Journal of Neuropsychiatry and Clinical Neurosciences, 2001, 13, 1-4.	0.9	1
483	Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 2003, 12, 1781-1781.	1.4	1
484	2013 in Review. American Journal of Psychiatry, 2013, 170, 1388-1392.	4.0	1
485	A Primate Model of the Effects of Childhood Antidepressant Treatment. American Journal of Psychiatry, 2014, 171, 252-255.	4.0	1
486	2015 in Review. American Journal of Psychiatry, 2015, 172, 1179-1181.	4.0	1

#	Article	IF	CITATIONS
487	7. Altered MAP2 Phosphorylation and Dendritic Spine Density in Schizophrenia. Biological Psychiatry, 2017, 81, S3-S4.	0.7	1
488	Parvalbumin-immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses., 1999, 408, 11.		1
489	Axosomatic input to subpopulations of cortically projecting pyramidal neurons in primate prefrontal cortex., 1997, 25, 326.		1
490	Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. , 0, .		1
491	Systems Analysis of the 22q11.2 Microdeletion Syndrome Converges on a Mitochondrial Interactome Necessary for Synapse Function and Behavior. SSRN Electronic Journal, 0, , .	0.4	1
492	Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects. Neuropsychopharmacology, 2022, 47, 2061-2070.	2.8	1
493	Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cerebral Cortex, 2022, 32, 5216-5229.	1.6	1
494	2009 in Review. American Journal of Psychiatry, 2009, 166, 1318-1321.	4.0	0
495	2011 in Review. American Journal of Psychiatry, 2011, 168, 1241-1244.	4.0	0
496	Response to Pearlman and Najjar. American Journal of Psychiatry, 2014, 171, 1118-1119.	4.0	O
497	3.63 Developmental Trajectories of Gaba Receptor Subunits in Layer 3 Pyramidal and Gaba Neurons in Monkey Visual and Prefrontal Cortices. Journal of the American Academy of Child and Adolescent Psychiatry, 2018, 57, S202.	0.3	0
498	F165. Using CRISPR/Cas9-Based Epigenetic Editing to Study the Role of Schizophrenia-Related Alterations in DNA Methylation on Dendritic Spine Density. Biological Psychiatry, 2019, 85, S277.	0.7	0
499	F170. Distinct Laminar and Regional Patterns of Markers of GABA Neuron Subtypes in Monkey Prefrontal and Visual Cortices. Biological Psychiatry, 2019, 85, S279.	0.7	O
500	T50. Laminar and Cellular Developmental Trajectories of GABA Transcripts in Cortical Regions of the Visuospatial Working Memory Network in Monkeys. Biological Psychiatry, 2019, 85, S148.	0.7	0
501	18. Molecular Substrate of Impaired Working Memory in Schizophrenia: Differential Contributions of Cortical Regions and Cell Types. Biological Psychiatry, 2019, 85, S7-S8.	0.7	O
502	20. Intrinsic Properties of Layer 3 Pyramidal Neurons From Monkey Prefrontal and Parietal Cortices. Biological Psychiatry, 2019, 85, S8.	0.7	0
503	Nanoscale Probing of Synaptic Architecture in Human Prefrontal Cortex. Biological Psychiatry, 2020, 87, S418.	0.7	0
504	2020 Articles of Import and Impact. American Journal of Psychiatry, 2021, 178, 13-16.	4.0	0

#	Article	IF	CITATIONS
505	Microanatomical Findings in Postmortem Brain Tissue from Subjects with Schizophrenia: Disturbances in Thalamocortical and Corticocortical Connectivity in Schizophrenia. Neurobiological Foundation of Aberrant Behaviors, 2002, , 151-171.	0.2	O
506	Analysis of Brain Disorders Using DNA Microarrays. Research and Perspectives in Neurosciences, 2003, , 45-63.	0.4	0
507	Transcriptomes in schizophrenia: assessing altered gene expression with microarrays., 2004,, 210-223.		O
508	Development of thalamocortical circuitry and the pathophysiology of schizophrenia., 2004, , 310-329.		0
509	Unrecognized chronic lithium neurotoxic reactions. JAMA - Journal of the American Medical Association, 1983, 250, 2029-2030.	3.8	0
510	Alterations in Cortical GABA Neurotransmission in Schizophrenia: Causes and Consequences. , 0, , 205-218.		0