
Takashi Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939932/publications.pdf Version: 2024-02-01

ΤΛΚΛΩΗΙ ΥΛΜΑΠΑ

#	Article	IF	CITATIONS
1	The <i>Chlorella variabilis</i> NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex Â. Plant Cell, 2010, 22, 2943-2955.	3.1	441
2	Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages. Applied and Environmental Microbiology, 2011, 77, 4155-4162.	1.4	175
3	Comparative studies onChlorella cell walls: Induction of protoplast formation. Archives of Microbiology, 1982, 132, 10-13.	1.0	124
4	Chlorella Viruses. Advances in Virus Research, 2006, 66, 293-336.	0.9	118
5	New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology (United) Tj ETQq1 1 ().784314 0.7	rgBJJOverloc
6	Microbial synthesis of hyaluronan and chitin: New approaches. Journal of Bioscience and Bioengineering, 2005, 99, 521-528.	1.1	87
7	Loss of Virulence of the Phytopathogen <i>Ralstonia solanacearum</i> Through Infection by φRSM Filamentous Phages. Phytopathology, 2012, 102, 469-477.	1.1	82
8	Self-splicing group l introns in eukaryotic viruses. Nucleic Acids Research, 1994, 22, 2532-2537.	6.5	72
9	A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology, 2010, 398, 135-147.	1.1	65
10	The Filamentous Phage ϕRSS1 Enhances Virulence of Phytopathogenic <i>Ralstonia solanacearum</i> on Tomato. Phytopathology, 2012, 102, 244-251.	1.1	62
11	Crystal Structure of Family 14 Polysaccharide Lyase with pH-dependent Modes of Action. Journal of Biological Chemistry, 2009, 284, 35572-35579.	1.6	57
12	Screening of Natural Waters for Viruses Which Infect <i>Chlorella</i> Cells. Applied and Environmental Microbiology, 1991, 57, 3433-3437.	1.4	57
13	Two asian jumbo phages, ï•RSL2 and ï•RSF1, infect Ralstonia solanacearum and show common features of ï•KZ-related phages. Virology, 2016, 494, 56-66.	1.1	56
14	Electrophoretic karyotyping and chromosomal gene mapping ofChlorella. Nucleic Acids Research, 1991, 19, 6191-6195.	6.5	53
15	The Involvement of a Cysteine Proteinase in the Nodule Development in Chinese Milk Vetch Infected with Mesorhizobium huakuii subsp. rengei. Plant Physiology, 2000, 124, 1087-1096.	2.3	53
16	Genomic Characterization of <i>Ralstonia solanacearum</i> Phage φRSA1 and Its Related Prophage (φRSX) in Strain GMI1000. Journal of Bacteriology, 2008, 190, 143-156.	1.0	50
17	Genomic Characterization of <i>Ralstonia solanacearum</i> Phage ï†RSB1, a T7-Like Wide-Host-Range Phage. Journal of Bacteriology, 2009, 191, 422-427.	1.0	50
18	Chitin Synthesis in Chlorovirus CVK2-Infected Chlorella Cells. Virology, 2002, 302, 123-131.	1.1	49

#	Article	IF	CITATIONS
19	The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Frontiers in Microbiology, 2014, 5, 321.	1.5	48
20	Genomic Characterization of the Filamentous Integrative Bacteriophages φRSS1 and φRSM1, Which Infect Ralstonia solanacearum. Journal of Bacteriology, 2007, 189, 5792-5802.	1.0	47
21	Host recognition and integration of filamentous phage ϕRSM in the phytopathogen, Ralstonia solanacearum. Virology, 2009, 384, 69-76.	1.1	47
22	Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Scientific Reports, 2018, 8, 4486.	1.6	47
23	Expression of the Gene Encoding a Translational Elongation Factor 3 Homolog of Chlorella Virus CVK2. Virology, 1993, 197, 742-750.	1.1	42
24	Alternative Expression of a Chitosanase Gene Produces Two Different Proteins in Cells Infected withChlorellaVirus CVK2. Virology, 1997, 230, 361-368.	1.1	42
25	Expression of a Chitinase Gene and Lysis of the Host Cell Wall during Chlorella Virus CVK2 Infection. Virology, 1999, 260, 308-315.	1.1	39
26	Molecular organization of Chlorella vulgaris chromosome I: presence of telomeric repeats that are conserved in higher plants. Molecular Genetics and Genomics, 1995, 246, 29-36.	2.4	35
27	Algal-Lytic Activities Encoded by Chlorella Virus CVK2. Virology, 2000, 277, 119-126.	1.1	33
28	Utilization of Filamentous Phage ϕRSM3 to Control Bacterial Wilt Caused by <i>Ralstonia solanacearum</i> . Plant Disease, 2012, 96, 1204-1209.	0.7	30
29	Giant viruses in the environment: their origins and evolution. Current Opinion in Virology, 2011, 1, 58-62.	2.6	29
30	Cryo-Electron Microscopy Three-Dimensional Structure of the Jumbo Phage ΦRSL1 Infecting the Phytopathogen Ralstonia solanacearum. Structure, 2013, 21, 298-305.	1.6	29
31	Aminoacylation of tRNAs Encoded by Chlorella Virus CVK2. Virology, 1999, 263, 220-229.	1.1	28
32	Resolvase-like serine recombinase mediates integration/excision in the bacteriophage ï•RSM. Journal of Bioscience and Bioengineering, 2011, 111, 109-116.	1.1	28
33	Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria. Frontiers in Microbiology, 2013, 4, 325.	1.5	28
34	Characterization of Bacteriophages Cp1 and Cp2, the Strain-Typing Agents for Xanthomonas axonopodis pv. citri. Applied and Environmental Microbiology, 2014, 80, 77-85.	1.4	27
35	Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Frontiers in Microbiology, 2017, 8, 1010.	1.5	26
36	Widespread Distribution ofChlorellaViruses in Japan. Bioscience, Biotechnology and Biochemistry, 1993, 57, 733-739.	0.6	24

#	Article	IF	CITATIONS
37	Genetic Variation ofChlorellaViruses: Variable Regions Localized on the CVK2 Genomic DNA. Virology, 1999, 255, 376-384.	1.1	24
38	vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2. FEBS Letters, 2004, 559, 51-56.	1.3	24
39	Systemic method to isolate large bacteriophages for use in biocontrol of aÂwide-range of pathogenic bacteria. Journal of Bioscience and Bioengineering, 2019, 127, 73-78.	1.1	22
40	Immediate early genes expressed in chlorovirus infections. Virology, 2004, 318, 214-223.	1.1	21
41	C-terminal repetitive motifs in Vp130 present at the unique vertex of the Chlorovirus capsid are essential for binding to the host Chlorella cell wall. Virology, 2006, 353, 433-442.	1.1	21
42	Monitoring of Phytopathogenic Ralstonia solanacearum Cells Using Green Fluorescent Protein-Expressing Plasmid Derived from Bacteriophage ϕRSS1. Journal of Bioscience and Bioengineering, 2007, 104, 451-456.	1.1	20
43	Site-specific recombination systems in filamentous phages. Molecular Genetics and Genomics, 2012, 287, 525-530.	1.0	19
44	Two catalytic domains of Chlorella virus CVK2 chitinase. Journal of Bioscience and Bioengineering, 2000, 89, 252-257.	1.1	18
45	Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology, 2016, 492, 73-81.	1.1	18
46	Characterization of rbcL group IA introns from two colonial volvocalean species (Chlorophyceae). Plant Molecular Biology, 1998, 37, 77-85.	2.0	16
47	Two different evolutionary lines of filamentous phages in Ralstonia solanacearum: their effects on bacterial virulence. Frontiers in Genetics, 2015, 6, 217.	1.1	16
48	Characterization of DNA-Binding Proteins and Protein Kinase Activities inChlorellaVirus CVK2. Virology, 1996, 219, 395-406.	1.1	15
49	Proteolytic Processing ofChlorellaVirus CVK2 Capsid Proteins. Virology, 1997, 227, 252-254.	1.1	15
50	A Variable Region on the Chlorovirus CVK2 Genome Contains Five Copies of the Gene for Vp260, a Viral-Surface Glycoprotein. Virology, 2002, 295, 289-298.	1.1	15
51	Vp130, a chloroviral surface protein that interacts with the host Chlorella cell wall. Virology, 2004, 319, 71-80.	1.1	14
52	Genetic rearrangements on the Chlorovirus genome that switch between hyaluronan synthesis and chitin synthesis. Virology, 2005, 342, 102-110.	1.1	14
53	Bacteriophages of Ralstonia solanacearum: Their Diversity and Utilization as Biocontrol Agents in Agriculture. , 0, , .		14
54	Lysogenic Conversion of the Phytopathogen Ralstonia solanacearum by the P2virus ï•RSY1. Frontiers in Microbiology, 2017, 8, 2212.	1.5	13

#	Article	IF	CITATIONS
55	Digestion of Chlorella Cells by Chlorovirus-encoded Polysaccharide Degrading Enzymes Microbes and Environments, 2001, 16, 206-212.	0.7	12
56	Retrotransposon-mediated restoration of Chlorella telomeres: accumulation of Zepp retrotransposons at termini of newly formed minichromosomes. Nucleic Acids Research, 2003, 31, 4646-4653.	6.5	12
57	ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant. Journal of Bioscience and Bioengineering, 2006, 102, 390-395.	1.1	11
58	The involvement of the PilQ secretin of type IV pili in phage infection in Ralstonia solanacearum. Biochemical and Biophysical Research Communications, 2016, 469, 868-872.	1.0	10
59	Insights into the diversity of φRSM phages infecting strains of the phytopathogen Ralstonia solanacearum complex: regulation and evolution. Molecular Genetics and Genomics, 2014, 289, 589-598.	1.0	8
60	3D structure of three jumbo phage heads. Journal of General Virology, 2020, 101, 1219-1226.	1.3	8
61	Dynamic integration and excision of filamentous phage XacF1 in <i>Xanthomonas citri</i> pv. <i>citri</i> , the causative agent of citrus canker disease. FEBS Open Bio, 2017, 7, 1715-1721.	1.0	7
62	Full genome sequence of a polyvalent bacteriophage infecting strains of Shigella, Salmonella, and Escherichia. Archives of Virology, 2018, 163, 3207-3210.	0.9	7
63	Hyaluronan synthesis in cultured tobacco cells (BYâ€⊋) expressing a chlorovirus enzyme: Cytological studies. Biotechnology and Bioengineering, 2013, 110, 1174-1179.	1.7	6
64	A Ralstonia solanacearum phage ϕRP15 is closely related to Viunalikeviruses and encodes 19 tRNA-related sequences. Virology Reports, 2016, 6, 61-73.	0.4	6
65	Molecular Cytological Analysis of Cysteine Proteinases from Nodules of Lotus japonicus. Cytologia, 2009, 74, 343-354.	0.2	5
66	Prolonged synthesis of hyaluronan by Chlorella cells infected with chloroviruses. Journal of Bioscience and Bioengineering, 2013, 115, 527-531.	1.1	5
67	Chitin synthesis by Chlorella cells infected by chloroviruses: Enhancement by adopting a slow-growing virus and treatment with aphidicolin. Journal of Bioscience and Bioengineering, 2018, 125, 311-315.	1.1	5
68	Disruption of gspD and its Effects on Endoglucanase and Filamentous Phage Secretion in Ralstonia Solanacearum. Procedia Environmental Sciences, 2014, 20, 753-759.	1.3	4
69	Mapping of cDNA clones on contig of Chlorella chromosome I. Journal of Bioscience and Bioengineering, 2000, 90, 431-436.	1.1	3
70	High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. International Journal of Molecular Sciences, 2021, 22, 11053.	1.8	3
71	Minichromosome formation in Chlorella cells irradiated with electron beams. Journal of Bioscience and Bioengineering, 2003, 95, 601-607.	1.1	2
72	The complete genomic sequence of the novel myovirus RP13 infecting Ralstonia solanacearum, the causative agent of bacterial wilt. Archives of Virology, 2021, 166, 651-654.	0.9	2

#	Article	IF	CITATIONS
73	In vitro characterization of the site-specific recombination system based on genus Habenivirus Ï-RSM small serine integrase. Molecular Genetics and Genomics, 2021, 296, 551-559.	1.0	2
74	Regulatory mechanism of the gene expression during chlorovirus infection cycle. Nucleic Acids Symposium Series, 2001, 1, 67-68.	0.3	1
75	Minichromosome formation in Chlorella cells irradiated with electron beams. Journal of Bioscience and Bioengineering, 2003, 95, 601-7.	1.1	1
76	Filamentous Phages Affect Virulence of the Phytopathogen Ralstonia solanacearum. , 2020, , 221-237.		0