Marina EnterrÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939859/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative anodes for Na–O ₂ batteries: the case of the Sn ₄ P ₃ alloy. Journal of Materials Chemistry A, 2022, 10, 2398-2411.	5.2	2
2	Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Naâ€O ₂ Battery Performance. Advanced Energy Materials, 2022, 12, .	10.2	13
3	Driving the sodium-oxygen battery chemistry towards the efficient formation of discharge products: The importance of sodium superoxide quantification. Journal of Energy Chemistry, 2022, 68, 709-720.	7.1	10
4	Boosting the Performance of Graphene Cathodes in Na–O ₂ Batteries by Exploiting the Multifunctional Character of Small Biomolecules. Small, 2021, 17, e2005034.	5.2	10
5	An Overview of Engineered Grapheneâ€Based Cathodes: Boosting Oxygen Reduction and Evolution Reactions in Lithium– and Sodium–Oxygen Batteries. ChemSusChem, 2020, 13, 1203-1225.	3.6	19
6	High Performance Na-O ₂ Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene. ACS Applied Materials & Interfaces, 2020, 12, 494-506.	4.0	32
7	Understanding enhanced charge storage of phosphorus-functionalized graphene in aqueous acidic electrolytes. Electrochimica Acta, 2020, 361, 136985.	2.6	22
8	Goldilocks and the three glymes: How Na+ solvation controls Na–O2 battery cycling. Energy Storage Materials, 2020, 29, 235-245.	9.5	21
9	Designing a manganese oxide bifunctional air electrode for aqueous chloride-based electrolytes in secondary zinc-air batteries. Electrochimica Acta, 2019, 320, 134557.	2.6	28
10	Controlling the Threeâ€Phase Boundary in Na–Oxygen Batteries: The Synergy of Carbon Nanofibers and Ionic Liquid. ChemSusChem, 2019, 12, 4054-4063.	3.6	12
11	Using square wave voltammetry for the electrochemical characterization of cerium oxide/multiwalled carbon nanotube composites in different aqueous electrolytes. Journal of Electroanalytical Chemistry, 2019, 847, 113269.	1.9	1
12	Flat-shaped carbon–graphene microcomposites as electrodes for high energy supercapacitors. Journal of Materials Chemistry A, 2019, 7, 14646-14655.	5.2	24
13	Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2019, 11, 6066-6077.	4.0	67
14	Pathways towards high performance Na–O ₂ batteries: tailoring graphene aerogel cathode porosity & nanostructure. Journal of Materials Chemistry A, 2018, 6, 20778-20787.	5.2	36
15	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Interfaces, 2017, 9, 24085-24099.	4.0	92
16	A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2017, 9, 44740-44755.	4.0	46
17	Nanostructured mesoporous carbons: Tuning texture and surface chemistry. Carbon, 2016, 108, 79-102.	5.4	149
18	Electrochemical storage mechanisms in non-stoichiometric cerium oxide/multiwalled carbon nanotube composites. Electrochimica Acta, 2016, 209, 25-35.	2.6	17

MARINA ENTERRÃA

#	Article	IF	CITATIONS
19	Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon, 2016, 105, 474-483.	5.4	66
20	Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon, 2015, 95, 72-83.	5.4	102
21	Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. Journal of Alloys and Compounds, 2014, 583, 60-69.	2.8	32
22	Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. Microporous and Mesoporous Materials, 2014, 190, 156-164.	2.2	8
23	Effects of the mesostructural order on the electrochemical performance of hierarchical micro–mesoporous carbons. Journal of Materials Chemistry A, 2014, 2, 12023-12030.	5.2	22
24	One-pot endo/exotemplating of hierarchical micro-mesoporous carbons. Carbon, 2013, 54, 365-377.	5.4	12
25	Avoiding structure degradation during activation of ordered mesoporous carbons. Carbon, 2012, 50, 3826-3835.	5.4	23
26	Synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas. Microporous and Mesoporous Materials, 2012, 151, 390-396.	2.2	44