Martin E Tanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939426/publications.pdf

Version: 2024-02-01

26 1,195 15 26 papers citations h-index g-index

27 27 27 1403
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Understanding Nature's Strategies for Enzyme-Catalyzed Racemization and Epimerization. Accounts of Chemical Research, 2002, 35, 237-246.	15.6	169
2	The enzymes of sialic acid biosynthesis. Bioorganic Chemistry, 2005, 33, 216-228.	4.1	127
3	Mechanistic studies on the indole prenyltransferases. Natural Product Reports, 2015, 32, 88-101.	10.3	111
4	The Structure of UDP-N-Acetylglucosamine 2-Epimerase Reveals Homology to Phosphoglycosyl Transferases,. Biochemistry, 2000, 39, 14993-15001.	2.5	108
5	Phosphinate Inhibitors of thed-Glutamic Acid-Adding Enzyme of Peptidoglycan Biosynthesis. Journal of Organic Chemistry, 1996, 61, 1756-1760.	3.2	101
6	The First Structure of UDP-Glucose Dehydrogenase Reveals the Catalytic Residues Necessary for the Two-fold Oxidation [,] . Biochemistry, 2000, 39, 7012-7023.	2.5	100
7	Active Site Residues of Glutamate Racemaseâ€. Biochemistry, 2001, 40, 6199-6204.	2.5	85
8	A Phosphinate Inhibitor of themeso-Diaminopimelic Acid-Adding Enzyme (MurE) of Peptidoglycan Biosynthesis. Journal of Organic Chemistry, 1998, 63, 10081-10085.	3.2	73
9	Mechanism of Dimethylallyltryptophan Synthase: Evidence for a Dimethylallyl Cation Intermediate in an Aromatic Prenyltransferase Reaction. Journal of the American Chemical Society, 2009, 131, 13932-13933.	13.7	60
10	Enzymatic Formation and Release of a Stable Glycal Intermediate:  The Mechanism of the Reaction Catalyzed by UDP-N-Acetylglucosamine 2-Epimerase. Journal of the American Chemical Society, 1996, 118, 3033-3034.	13.7	39
11	The Structure ofl-Ribulose-5-Phosphate 4-Epimerase: An Aldolase-like Platform for Epimerizationâ€,‡. Biochemistry, 2001, 40, 14763-14771.	2.5	38
12	Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nature Structural and Molecular Biology, 2020, 27, 802-813.	8.2	35
13	PseG of Pseudaminic Acid Biosynthesis. Journal of Biological Chemistry, 2006, 281, 20902-20909.	3.4	32
14	Covalent Adduct Formation with a Mutated Enzyme:Â Evidence for a Thioester Intermediate in the Reaction Catalyzed by UDP-Glucose Dehydrogenase. Journal of the American Chemical Society, 1998, 120, 6613-6614.	13.7	27
15	Helical Shape of Helicobacter pylori Requires an Atypical Glutamine as a Zinc Ligand in the Carboxypeptidase Csd4. Journal of Biological Chemistry, 2015, 290, 3622-3638.	3.4	17
16	A Bacterial Cell Shape-Determining Inhibitor. ACS Chemical Biology, 2016, 11, 981-991.	3.4	16
17	Phosphinic acid-based inhibitors of tubulin polyglutamylases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4408-4412.	2.2	12
18	Transient oxidation as a mechanistic strategy in enzymatic catalysis. Current Opinion in Chemical Biology, 2008, 12, 532-538.	6.1	10

#	Article	IF	CITATIONS
19	Peptides Containing meso â€Oxaâ€Diaminopimelic Acid as Substrates for the Cellâ€Shapeâ€Determining Proteases Csd6 and Pgp2. ChemBioChem, 2019, 20, 1591-1598.	2.6	10
20	Synthesis of a <i>meso</i> -Oxa-Diaminopimelic Acid Containing Peptidoglycan Pentapeptide and Coupling to the GlcNAc- <i>anhydro</i> -MurNAc Disaccharide. Organic Letters, 2020, 22, 2313-2317.	4.6	7
21	Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. Journal of Biological Chemistry, 2021, 296, 100528.	3.4	5
22	Increasing the Diversity of Known Pictet-Spenglerases. Chemistry and Biology, 2015, 22, 806-807.	6.0	4
23	A guanidinium-based inhibitor of a type I isopentenyl diphosphate isomerase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127577.	2.2	4
24	Studies with Guanidinium- and Amidinium-Based Inhibitors Suggest Minimal Stabilization of Allylic Carbocation Intermediates by Dehydrosqualene and Squalene Synthases. Biochemistry, 2018, 57, 5591-5601.	2.5	2
25	ArnD is a deformylase involved in polymyxin resistance. Chemical Communications, 2020, 56, 6830-6833.	4.1	2
26	Phosphinic acid-based inhibitors of tubulin polyglycylation. Chemical Communications, 2022, 58, 6530-6533.	4.1	1