
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Information Retrieval and Text Mining Technologies for Chemistry. Chemical Reviews, 2017, 117, 7673-7761.	23.0	195
2	CHEMDNER: The drugs and chemical names extraction challenge. Journal of Cheminformatics, 2015, 7, S1.	2.8	179
3	The CHEMDNER corpus of chemicals and drugs and its annotation principles. Journal of Cheminformatics, 2015, 7, S2.	2.8	166
4	Inhibition of a C9a/DNMT network triggers immune-mediated bladder cancer regression. Nature Medicine, 2019, 25, 1073-1081.	15.2	125
5	Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nature Communications, 2017, 8, 15424.	5.8	109
6	APIF: A New Interaction Fingerprint Based on Atom Pairs and Its Application to Virtual Screening. Journal of Chemical Information and Modeling, 2009, 49, 1245-1260.	2.5	102
7	A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology, 2017, 42, 524-539.	2.8	86
8	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	3.6	81
9	Chemical Interrogation of FOXO3a Nuclear Translocation Identifies Potent and Selective Inhibitors of Phosphoinositide 3-Kinases. Journal of Biological Chemistry, 2009, 284, 28392-28400.	1.6	77
10	Design, Synthesis, and Biological Evaluation of First-in-Class Dual Acting Histone Deacetylases (HDACs) and Phosphodiesterase 5 (PDE5) Inhibitors for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2016, 59, 8967-9004.	2.9	71
11	Comparison of Ligand-Based and Receptor-Based Virtual Screening of HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors Using 3D Ligand Shape Matching and Ligandâ^'Receptor Docking. Journal of Chemical Information and Modeling, 2008, 48, 509-533.	2.5	67
12	Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer's disease. Clinical Epigenetics, 2015, 7, 108.	1.8	52
13	Design, synthesis, biological evaluation and inÂvivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2018, 150, 506-524.	2.6	48
14	LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Research, 2017, 45, W484-W489.	6.5	41
15	In Silico Aptamer Docking Studies: From a Retrospective Validation to a Prospective Case Study'TIM3 Aptamers Binding. Molecular Therapy - Nucleic Acids, 2016, 5, e376.	2.3	40
16	Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chemistry and Physics of Lipids, 2006, 144, 69-84.	1.5	39
17	Discovery of Mitogen-Activated Protein Kinase-Interacting Kinase 1 Inhibitors by a Comprehensive Fragment-Oriented Virtual Screening Approach. Journal of Medicinal Chemistry, 2010, 53, 6618-6628.	2.9	38
18	Discovery of Reversible DNA Methyltransferase and Lysine Methyltransferase G9a Inhibitors with Antitumoral in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 6518-6545.	2.9	36

#	Article	IF	CITATIONS
19	Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 149.	1.7	32
20	Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk. Cardiovascular Research, 2016, 110, 309-318.	1.8	30
21	Impact of Scaffold Exploration on Novel Dual-Acting Histone Deacetylases and Phosphodiesterase 5 Inhibitors for the Treatment of Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 638-661.	1.7	30
22	lmidazo[1,2-a]pyrazines as novel PI3K inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1874-1878.	1.0	29
23	Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PLoS ONE, 2017, 12, e0185169.	1.1	29
24	Discovery of <i>in Vivo</i> Chemical Probes for Treating Alzheimer's Disease: Dual Phosphodiesterase 5 (PDE5) and Class I Histone Deacetylase Selective Inhibitors. ACS Chemical Neuroscience, 2019, 10, 1765-1782.	1.7	28
25	Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chemical Neuroscience, 2019, 10, 4076-4101.	1.7	27
26	Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget, 2017, 8, 71709-71724.	0.8	27
27	Novel Scaffold Fingerprint (SFP): Applications in Scaffold Hopping and Scaffold-Based Selection of Diverse Compounds. Journal of Chemical Information and Modeling, 2015, 55, 1-18.	2.5	26
28	A novel FTY720 analogue targets SET-PP2A interaction and inhibits growth of acute myeloid leukemia cells without inducing cardiac toxicity. Cancer Letters, 2020, 468, 1-13.	3.2	26
29	Identification of ETP-46321, a potent and orally bioavailable PI3K α, δ inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3460-3466.	1.0	24
30	MMP10 Promotes Efficient Thrombolysis After Ischemic Stroke in Mice with Induced Diabetes. Translational Stroke Research, 2019, 10, 389-401.	2.3	21
31	Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 580-587.	1.3	20
32	Fragment-Hopping-Based Discovery of a Novel Chemical Series of Proto-Oncogene PIM-1 Kinase Inhibitors. PLoS ONE, 2012, 7, e45964.	1.1	19
33	Rapid identification of ETP-46992, orally bioavailable PI3K inhibitor, selective versus mTOR. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5208-5214.	1.0	19
34	Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase G9a and DNA Methyltransferase Biological Spaces. Journal of Medicinal Chemistry, 2018, 61, 6546-6573.	2.9	19
35	Towards the understanding of the activity of G9a inhibitors: an activity landscape and molecular modeling approach. Journal of Computer-Aided Molecular Design, 2020, 34, 659-669.	1.3	19
36	Biologically Relevant Chemical Space Navigator: From Patent and Structure–Activity Relationship Analysis to Library Acquisition and Design. Journal of Chemical Information and Modeling, 2012, 52, 3123-3137.	2.5	18

#	Article	IF	CITATIONS
37	Design, Synthesis, and Biological Evaluation of Novel Matrix Metalloproteinase Inhibitors As Potent Antihemorrhagic Agents: From Hit Identification to an Optimized Lead. Journal of Medicinal Chemistry, 2015, 58, 2465-2488.	2.9	18
38	Discovery of Novel Non yclam Polynitrogenated CXCR4 Coreceptor Inhibitors. ChemMedChem, 2008, 3, 1549-1557.	1.6	17
39	Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Medicinal Chemistry, 2011, 3, 95-134.	1.1	17
40	Solid-phase synthesis of a combinatorial library of dihydroceramide analogues and its activity in human alveolar epithelial cells. Bioorganic and Medicinal Chemistry, 2007, 15, 50-62.	1.4	16
41	Conformational Selection versus Induced Fit in Kinases: The Case of PI3Kâ€Î³. Angewandte Chemie - International Edition, 2012, 51, 642-646.	7.2	16
42	Development and Validation of Molecular Overlays Derived from Three-Dimensional Hydrophobic Similarity with PharmScreen. Journal of Chemical Information and Modeling, 2018, 58, 1596-1609.	2.5	14
43	Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Frontiers in Immunology, 2018, 9, 68.	2.2	14
44	An integrated one-step system to extract, analyze and annotate all relevant information from image-based cell screening of chemical libraries. Molecular BioSystems, 2010, 6, 711.	2.9	11
45	Discovery and Safety Profiling of a Potent Preclinical Candidate, (4-[4-[[(3 <i>R</i>)-3-(Hydroxycarbamoyl)-8-azaspiro[4.5]decan-3-yl]sulfonyl]phenoxy]- <i>N</i> -methylbenzamid (CM-352), for the Prevention and Treatment of Hemorrhage. Journal of Medicinal Chemistry, 2015, 58, 2941-2957.	e) _{2.9}	11
46	Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multiple Myeloma. Journal of Medicinal Chemistry, 2021, 64, 3392-3426.	2.9	11
47	Structure-Based Virtual Screening of FGFR Inhibitors. BioDrugs, 2007, 21, 31-45.	2.2	10
48	The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw120.	1.4	10
49	Targeting the anion exchanger 2 with specific peptides as a new therapeutic approach in B lymphoid neoplasms. Haematologica, 2018, 103, 1065-1072.	1.7	10
50	Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome. PLoS ONE, 2017, 12, e0190275.	1.1	10
51	Using Novel Descriptor Accounting for Ligand–Receptor Interactions To Define and Visually Explore Biologically Relevant Chemical Space. Journal of Chemical Information and Modeling, 2012, 52, 1086-1102.	2.5	9
52	Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization. Journal of Cheminformatics, 2018, 10, 32.	2.8	8
53	Centralizing Discovery Information: From Logistics to Knowledge at a Public Organization. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 429-449.	0.6	4
54	Cell-Integral-Diversity Criterion:  A Proposal for Minimizing Cluster Artifact in Cell-Based Selections. Journal of Chemical Information and Modeling, 2007, 47, 1886-1896.	2.5	3

#	Article	IF	CITATIONS
55	Fine tuning for success in structure-based virtual screening. Journal of Computer-Aided Molecular Design, 2021, 35, 1195-1206.	1.3	3
56	Dual epigenetic modifiers for cancer therapy. Molecular and Cellular Oncology, 2017, 4, e1342748.	0.3	2
57	Phenotypic Screening To Discover Novel Chemical Series as Efficient Antihemorrhagic Agents. ACS Medicinal Chemistry Letters, 2018, 9, 428-433.	1.3	2
58	Inhibition of the Methyltransferase G9a with Small Molecules As a New Therapeutic Strategy for Treatment of Hematological Malignancies. Blood, 2014, 124, 3532-3532.	0.6	2
59	P230Metalloproteinases inhibition: a new approach to reduce hemorrhage and blood transfusions. Cardiovascular Research, 2014, 103, S41.2-S41.	1.8	0