## Maria Chromcikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939288/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thermokinetic behavior of the Al2O3-PbO-B2O3 glasses. Journal of Non-Crystalline Solids, 2022, 576, 121230.                                                                 | 1.5 | 3         |
| 2  | Effect of lithium doping on the glass transition behavior of the Bioglass 45S5. Journal of Non-Crystalline Solids, 2022, 594, 121797.                                       | 1.5 | 2         |
| 3  | Identification of surface active components in glass forming melts by thermodynamic model. Journal of Non-Crystalline Solids, 2021, 551, 120415.                            | 1.5 | 2         |
| 4  | Thermodynamic model of ZnOâ€Nb 2 O 5 â€P 2 O 5 glasses – parameterization and validation. International<br>Journal of Applied Glass Science, 2021, 12, 581-587.             | 1.0 | 1         |
| 5  | Raman spectroscopic study of corroded historical glass. International Journal of Applied Glass<br>Science, 2021, 12, 613-620.                                               | 1.0 | 2         |
| 6  | Role of modifiers in the structural interpretation of the glass transition behavior in<br>MgO/BaO-Al2O3-P2O5 glasses. Journal of Non-Crystalline Solids, 2021, 573, 121114. | 1.5 | 7         |
| 7  | Structural relaxation and viscosity of Al2O3 doped magnesium phosphate glasses. Journal of Non-Crystalline Solids, 2020, 550, 120323.                                       | 1.5 | 5         |
| 8  | Thermodynamic modeling and Raman spectroscopy study of Na2O-TiO2-SiO2 glasses. Vibrational Spectroscopy, 2020, 111, 103160.                                                 | 1.2 | 8         |
| 9  | Crystallization kinetics of binary Yb2O3–Al2O3 glass. Journal of Thermal Analysis and Calorimetry, 2020, 142, 2141-2148.                                                    | 2.0 | 2         |
| 10 | Thermodynamic model and Raman spectra of MgO–P2O5 glasses. Journal of Thermal Analysis and<br>Calorimetry, 2020, 142, 2025-2031.                                            | 2.0 | 4         |
| 11 | Structure and Raman spectra of binary barium phosphate glasses. Journal of Thermal Analysis and<br>Calorimetry, 2020, 142, 937-942.                                         | 2.0 | 5         |
| 12 | Thermodynamic model and Raman spectra of binary barium borate glassforming melts. Journal of<br>Thermal Analysis and Calorimetry, 2020, 142, 945-951.                       | 2.0 | 3         |
| 13 | Correlation between the activation energies of structural relaxation and viscous flow for<br>BaO–P2O5–Al2O3 glasses. Journal of Non-Crystalline Solids, 2020, 536, 119998.  | 1.5 | 13        |
| 14 | Thermodynamic model and Raman spectra of BaO-B2O3 glasses. Vibrational Spectroscopy, 2019, 105, 102970.                                                                     | 1.2 | 10        |
| 15 | Thermodynamic model and high temperature Raman spectra of Na2O-B2O3 glassforming melts. Journal of Alloys and Compounds, 2019, 798, 700-705.                                | 2.8 | 2         |
| 16 | High-temperature Raman study of K2ZrF6 phase transitions. Journal of Alloys and Compounds, 2019,<br>791, 45-50.                                                             | 2.8 | 2         |
| 17 | Thermokinetic behavior of Ga-doped GeTe4 glasses. Journal of Non-Crystalline Solids, 2019, 512, 7-14.                                                                       | 1.5 | 4         |
| 18 | Optical microscopy, Raman spectroscopy, and AFM study of heavy weathered surface of barium crystal glass. Chemical Papers, 2018, 72, 2153-2158.                             | 1.0 | 6         |

MARIA CHROMCIKOVA

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structural relaxation of lead and barium-free crystal glasses. Journal of Thermal Analysis and Calorimetry, 2018, 133, 371-377.                                                       | 2.0 | 1         |
| 20 | Thermodynamic model and high-temperature Raman spectra of 25Na2O·75B2O3 glassforming melts.<br>Journal of Thermal Analysis and Calorimetry, 2018, 133, 429-433.                       | 2.0 | 8         |
| 21 | Viscosity and configuration entropy of glasses for CHROMPIC vitrification. Journal of Thermal Analysis and Calorimetry, 2018, 133, 365-370.                                           | 2.0 | 1         |
| 22 | Parameterization and Validation of Thermochemical Models of Glass by Advanced Statistical Analysis of Spectral Data. Hot Topics in Thermal Analysis and Calorimetry, 2017, , 257-278. | 0.5 | 7         |
| 23 | Se-doped GeTe4 glasses for far-infrared optical fibers. Journal of Alloys and Compounds, 2017, 695, 2434-2443.                                                                        | 2.8 | 11        |
| 24 | The Raman spectra and structure of PbO–WO3–P2O5 glasses. Journal of Commonwealth Law and Legal<br>Education, 2016, 57, 32-36.                                                         | 0.2 | 2         |
| 25 | Chemical Durability of Gamma-Irradiated Glass Fibrous Insulation. Nuclear Technology, 2016, 193, 297-305.                                                                             | 0.7 | 2         |
| 26 | Crystallization kinetics of borosilicate glasses for CHROMPIC nuclear waste vitrification. Journal of Commonwealth Law and Legal Education, 2015, 56, 49-52.                          | 0.2 | 1         |
| 27 | Thermodynamic model and structure of ZnO–MoO3–P2O5 glasses. Journal of Commonwealth Law and<br>Legal Education, 2015, 56, 63-66.                                                      | 0.2 | 3         |
| 28 | Thermodynamic model and Raman spectra of ZnO–P2O5 glasses. Journal of Thermal Analysis and Calorimetry, 2015, 121, 85-91.                                                             | 2.0 | 14        |
| 29 | Thermodynamic model and Raman spectra of CaO–P2O5 glasses. Journal of Thermal Analysis and Calorimetry, 2015, 121, 269-274.                                                           | 2.0 | 8         |
| 30 | Thermodynamic model and viscosity of Ge–S glasses. Journal of Thermal Analysis and Calorimetry, 2014, 116, 581-588.                                                                   | 2.0 | 10        |
| 31 | Structure of As2S3–Sb4S4 glasses by combined Raman spectroscopy and thermodynamic modeling approach. Journal of Non-Crystalline Solids, 2014, 401, 115-118.                           | 1.5 | 3         |
| 32 | Magnetic and Surface Properties of High-Induction Nanocrystalline Fe-Nb-Cu-B/P-Si Ribbons. IEEE Transactions on Magnetics, 2014, 50, 1-4.                                             | 1.2 | 4         |
| 33 | Structure of Na2O–MgO–CaO–SiO2 glasses by combined Raman spectroscopy and thermodynamic<br>modeling approach. Journal of Thermal Analysis and Calorimetry, 2014, 118, 835-840.        | 2.0 | 9         |
| 34 | Thermodynamic model and viscosity of Na2O–MgO–CaO–SiO2 glasses. Journal of Non-Crystalline<br>Solids, 2014, 401, 237-240.                                                             | 1.5 | 8         |
| 35 | Structural relaxation of PbO–WO3–P2O5 glasses. Journal of Thermal Analysis and Calorimetry, 2013, 114, 947-954                                                                        | 2.0 | 4         |
| 36 | As2Se3 melt crystallization studied by quadratic approximation of nucleation and growth rate temperature dependence. Journal of Thermal Analysis and Calorimetry, 2013, 114, 971-977. | 2.0 | 7         |

MARIA CHROMCIKOVA

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermodynamic model and structure of CaO–P2O5 glasses. Journal of Thermal Analysis and Calorimetry, 2013, 114, 785-789.                                            | 2.0 | 12        |
| 38 | Thermodynamic model and physical properties of selected zirconia containing silicate glasses. Journal of Thermal Analysis and Calorimetry, 2012, 109, 831-840.     | 2.0 | 10        |
| 39 | Thermal Properties and Related Structural Study of Oxide Glasses. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 179-197.                                 | 0.5 | 11        |
| 40 | New features of the glass transition revealed by the StepScan® DSC. Journal of Thermal Analysis and Calorimetry, 2010, 101, 189-194.                               | 2.0 | 5         |
| 41 | Stress Strain Testing of the Strand of E-Glass Fibers. Advanced Materials Research, 2008, 39-40, 165-168.                                                          | 0.3 | 0         |
| 42 | Chemical Durability of Glass Thermal Insulation Fibers in Borate and Phosphate Water Solutions.<br>Advanced Materials Research, 2008, 39-40, 363-366.              | 0.3 | 1         |
| 43 | Viscosity and structural relaxation of 15Na2O·xMgO·(10â^'x)CaO·75SiO2 glasses. Journal of Thermal<br>Analysis and Calorimetry, 2007, 90, 421-429.                  | 2.0 | 8         |
| 44 | Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition.<br>Journal of Thermal Analysis and Calorimetry, 2006, 84, 703-708. | 2.0 | 25        |
| 45 | Structure and Properties of Selected Zirconia Silicate Glasses. Advanced Materials Research, 0, 39-40, 173-176.                                                    | 0.3 | 5         |
| 46 | Application of Thermophysical Methods for Oxide/Silicate Glasses. Advanced Materials Research, 0, 1126, 99-104.                                                    | 0.3 | 0         |