
Christopher C W Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
2	The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Molecular Biology of the Cell, 2011, 22, 3791-3800.	0.9	391
3	3D microtumors in vitro supported by perfused vascular networks. Scientific Reports, 2016, 6, 31589.	1.6	301
4	Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-Î ² in Vascular Morphogenesis. Circulation Research, 2008, 102, 637-652.	2.0	300
5	A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab on A Chip, 2017, 17, 511-520.	3.1	250
6	Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab on A Chip, 2016, 16, 282-290.	3.1	197
7	Notch Activation during Endothelial Cell Network Formation in Vitro Targets the Basic HLH Transcription Factor HESR-1 and Downregulates VEGFR-2/KDR Expression. Microvascular Research, 2002, 64, 372-383.	1.1	186
8	Endothelial???stromal interactions in angiogenesis. Current Opinion in Hematology, 2008, 15, 204-209.	1.2	142
9	A Role for Partial Endothelial–Mesenchymal Transitions in Angiogenesis?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 303-308.	1.1	140
10	Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomaterialia, 2016, 43, 122-138.	4.1	125
11	Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Engineering - Part A, 2016, 22, 1016-1025.	1.6	109
12	Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials, 2017, 116, 118-129.	5.7	88
13	Angiogenic sprouting is regulated by endothelial cell expression of Slug (Snai2). Journal of Cell Science, 2014, 127, 2017-28.	1.2	85
14	Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis, 2019, 22, 145-155.	3.7	70
15	Induction of Mesoderm and Neural Crest-Derived Pericytes from Human Pluripotent Stem Cells to Study Blood-Brain Barrier Interactions. Stem Cell Reports, 2019, 12, 451-460.	2.3	69
16	Engineering Vascularized Organoid-on-a-Chip Models. Annual Review of Biomedical Engineering, 2021, 23, 141-167.	5.7	67
17	Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue Engineering - Part C: Methods, 2018, 24, 697-708.	1.1	60
18	Slug regulates the Dll4-Notch-VEGFR2 axis to control endothelial cell activation and angiogenesis. Nature Communications, 2020, 11, 5400.	5.8	59

#	Article	IF	CITATIONS
19	Tumor-on-chip modeling of organ-specific cancer and metastasis. Advanced Drug Delivery Reviews, 2021, 175, 113798.	6.6	57
20	Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Research, 2016, 18, 50.	2.2	56
21	mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis, 2016, 19, 359-371.	3.7	48
22	HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochemical and Biophysical Research Communications, 2006, 346, 637-648.	1.0	38
23	Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascularization Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1029-1035.	1.9	38
24	An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms. Lab on A Chip, 2016, 16, 868-876.	3.1	37
25	3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Research, 2017, 77, 4171-4184.	0.4	35
26	Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology, 2020, 445, 152601.	2.0	25
27	Executive summary of the 11th HHT international scientific conference. Angiogenesis, 2015, 18, 511-524.	3.7	24
28	A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. Microsystems and Nanoengineering, 2021, 7, 4.	3.4	23
29	Antibody-Mediated Phosphatidylserine Blockade Enhances the Antitumor Responses to CTLA-4 and PD-1 Antibodies in Melanoma. Cancer Immunology Research, 2016, 4, 531-540.	1.6	20
30	Regulation of Partial and Reversible Endothelial-to-Mesenchymal Transition in Angiogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 702021.	1.8	17
31	The vascular niche in next generation microphysiological systems. Lab on A Chip, 2021, 21, 3244-3262.	3.1	13
32	3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels. Methods in Molecular Biology, 2017, 1612, 325-344.	0.4	11
33	Adoptive T-Cell Therapy in Advanced Colorectal Cancer: A Systematic Review. Oncologist, 2022, 27, 210-219.	1.9	7
34	Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Reports, 2022, 39, 110641.	2.9	5
35	Christopher Hughes: An in vitro model for the Study of Angiogenesis (Interview). Journal of Visualized Experiments, 2007, , 175.	0.2	1
36	A role for endothelial cellâ€derived Wnt5a in angiogenesis. FASEB Journal, 2012, 26, 48.4.	0.2	0

#	Article	IF	CITATIONS
37	Multiscale modeling of glioblastoma. Translational Cancer Research, 2018, 7, S96-S98.	0.4	0