List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3939073/publications.pdf Version: 2024-02-01

Ιπριτή Η Μνέρς

#	Article	IF	CITATIONS
1	Post-release genetic assessment of two congeneric weed biological control agents. Biological Control, 2021, 152, 104462.	1.4	1
2	Comment on $\hat{a} \in \infty$ Precipitation drives global variation in natural selection $\hat{a} \in \mathbb{R}$ Science, 2018, 359, .	6.0	5
3	Population cycles: generalities, exceptions and remaining mysteries. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172841.	1.2	71
4	Biological Control Agents: Invasive Species or Valuable Solutions?. , 2017, , 191-202.		16
5	Phylloplane bacteria increase the negative impact of food limitation on insect fitness. Ecological Entomology, 2017, 42, 411-421.	1.1	7
6	Impacts of Insect Herbivores on Plant Populations. Annual Review of Entomology, 2017, 62, 207-230.	5.7	57
7	Ecology and evolution of pathogens in natural populations of Lepidoptera. Evolutionary Applications, 2016, 9, 231-247.	1.5	69
8	The effects of experimental warming on the timing of a plant–insect herbivore interaction. Journal of Animal Ecology, 2015, 84, 785-796.	1.3	26
9	Resistance of Trichoplusia ni Populations Selected by Bacillus thuringiensis Sprays to Cotton Plants Expressing Pyramided Bacillus thuringiensis Toxins Cry1Ac and Cry2Ab. Applied and Environmental Microbiology, 2015, 81, 1884-1890.	1.4	16
10	Early childhood nutrition, active outdoor play and sources of information for families living in highly socially disadvantaged locations. Journal of Paediatrics and Child Health, 2015, 51, 287-293.	0.4	9
11	Early childhood nutrition concerns, resources and services for Aboriginal families in Victoria. Australian and New Zealand Journal of Public Health, 2014, 38, 370-376.	0.8	10
12	Testing biological control agent compatibility: Cyphocleonus achates and Larinus minutus on diffuse knapweed. Biological Control, 2014, 70, 48-53.	1.4	6
13	Genetic Similarity of Island Populations of Tent Caterpillars during Successive Outbreaks. PLoS ONE, 2014, 9, e96679.	1.1	16
14	The Relationship between Parasite Fitness and Host Condition in an Insect - Virus System. PLoS ONE, 2014, 9, e106401.	1.1	19
15	Population Cycles in Forest Lepidoptera Revisited. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 565-592.	3.8	99
16	Influences of two lifeâ€history stages of the weevil, <i>Larinus minutus</i> , on its host plant <i>Centaurea diffusa</i> . Ecological Entomology, 2013, 38, 40-48.	1.1	4
17	Strength in numbers? Effects of multiple natural enemy species on plant performance. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122756.	1.2	46
18	A multi-scale framework for evaluating the benefits and costs of alternative management strategies against invasive plants. Journal of Environmental Planning and Management, 2013, 56, 412-434.	2.4	7

#	Article	IF	CITATIONS
19	Tent caterpillars are robust to variation in leaf phenology and quality in two thermal environments. Bulletin of Entomological Research, 2013, 103, 522-529.	0.5	8
20	Lifeâ€history consequences and disease resistance of western tent caterpillars in response to localised, herbivoreâ€induced changes in alder leaf quality. Ecological Entomology, 2013, 38, 61-67.	1.1	9
21	Multiple Mating and Family Structure of the Western Tent Caterpillar, Malacosoma californicum pluviale: Impact on Disease Resistance. PLoS ONE, 2012, 7, e37472.	1.1	8
22	Resource concentration by insects and implications for plant populations. Journal of Ecology, 2012, 100, 923-931.	1.9	33
23	Genetic variation in fitness parameters associated with resistance to Bacillus thuringiensis in male and female Trichoplusia ni. Journal of Invertebrate Pathology, 2011, 107, 27-32.	1.5	10
24	The effect of host plant species on performance and movement behaviour of the cabbage looper Trichoplusia ni and their potential influences on infection by Autographa californica multiple nucleopolyhedrovirus. Agricultural and Forest Entomology, 2011, 13, 157-164.	0.7	13
25	Larval survival, host plant preferences and developmental responses of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) on wild brassicaceous species. Entomological Science, 2011, 14, 20-30.	0.3	27
26	Genetic analysis of cabbage loopers, <i>Trichoplusia ni</i> (Lepidoptera: Noctuidae), a seasonal migrant in western North America. Evolutionary Applications, 2011, 4, 89-99.	1.5	20
27	The effect of food limitation on immunity factors and disease resistance in the western tent caterpillar. Oecologia, 2011, 167, 647-655.	0.9	32
28	Relationships between Scotch broom (CytisusÂscoparius), soil nutrients, and plant diversity in the Garry oak savannah ecosystem. Plant Ecology, 2010, 207, 81-91.	0.7	44
29	Indirect plant-mediated effects on insect immunity and disease resistance in a tritrophic system. Basic and Applied Ecology, 2010, 11, 15-22.	1.2	74
30	Spatial and temporal changes in genetic structure of greenhouse and field populations of cabbage looper,Trichoplusia ni. Molecular Ecology, 2010, 19, 1122-1133.	2.0	20
31	Temporal and spatial variability of rosy apple aphid <i>Dysaphis plantaginea</i> populations: is there a role of the alternate host plant <i>Plantago major</i> ?. Agricultural and Forest Entomology, 2010, 12, 333-341.	0.7	6
32	Resistance to Bacillus thuringiensis in the cabbage looper (Trichoplusia ni) increases susceptibility to a nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2010, 105, 204-206.	1.5	8
33	Modified <i>Bacillus thuringiensis</i> Toxins and a Hybrid <i>B. thuringiensis</i> Strain Counter Greenhouse-Selected Resistance in <i>Trichoplusia ni</i> . Applied and Environmental Microbiology, 2009, 75, 5739-5741.	1.4	18
34	Distinguishing Between Laboratory-Reared and Greenhouse- and Field-Collected <i>Trichoplusia ni</i> (Lepidoptera: Noctuidae) Using the Amplified Fragment Length Polymorphism Method. Annals of the Entomological Society of America, 2009, 102, 151-157.	1.3	2
35	Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biological Control, 2009, 50, 66-72.	1.4	31
36	Plant community changes after the reduction of an invasive rangeland weed, diffuse knapweed, Centaurea diffusa. Biological Control, 2009, 51, 140-146.	1.4	18

#	Article	IF	CITATIONS
37	Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis. Journal of Animal Ecology, 2009, 78, 646-655.	1.3	36
38	Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni?. Journal of Invertebrate Pathology, 2009, 100, 61-67.	1.5	50
39	Refuges in reverse: the spread of Bacillus thuringiensis resistance to unselected greenhouse populations of cabbage loopers Trichoplusia ni. Agricultural and Forest Entomology, 2008, 10, 119-127.	0.7	9
40	Avoidance of the host immune response by a generalist parasitoid, <i>Compsilura concinnata</i> Meigen. Ecological Entomology, 2008, 33, 517-522.	1.1	7
41	Spinosad Interacts Synergistically with the Insect Pathogen <i>Metarhizium anisopliae</i> Against the Exotic Wireworms <i>Agriotes lineatus</i> and <i>Agriotes obscurus</i> (Coleoptera: Elateridae). Journal of Economic Entomology, 2007, 100, 31-38.	0.8	45
42	Mechanism of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Greenhouse Population of the Cabbage Looper, Trichoplusia ni. Applied and Environmental Microbiology, 2007, 73, 1199-1207.	1.4	88
43	Tips for Effective Communication in Ecology. Bulletin of the Ecological Society of America, 2007, 88, 206-215.	0.2	0
44	Competition between Lythrum salicaria and a rare species: combining evidence from experiments and long-term monitoring. Plant Ecology, 2007, 191, 153-161.	0.7	14
45	The influences of host plant and genetic resistance to Bacillus thuringiensis on trade-offs between offspring number and growth rate in cabbage loopers, Trichoplusia ni. Ecological Entomology, 2006, 31, 172-178.	1.1	15
46	The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1031-1038.	1.2	88
47	Variable success of biological control of Lythrum salicaria in British Columbia. Biological Control, 2005, 32, 269-279.	1.4	40
48	Inheritance of Resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia ni. Applied and Environmental Microbiology, 2004, 70, 5859-5867.	1.4	33
49	Inheritance of Resistance to Bacillus thuringiensis Cry1Ac Toxin in a Greenhouse-Derived Strain of Cabbage Looper (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2004, 97, 2073-2078.	0.8	73
50	Adaptation in an insect host-plant pathogen interaction. Ecology Letters, 2004, 7, 632-639.	3.0	58
51	Interactions between predatory ground beetles, the winter moth and an introduced parasitoid on the Lower Mainland of British Columbia. Pedobiologia, 2004, 48, 23-35.	0.5	17
52	Hierarchical spatial structure of genetically variable nucleopolyhedroviruses infecting cyclic populations of western tent caterpillars. Molecular Ecology, 2003, 12, 881-890.	2.0	35
53	The Ecology and Evolution of Insect Baculoviruses. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 239-272.	3.8	259
54	Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecological Entomology, 2003, 28, 41-50.	1,1	55

#	Article	IF	CITATIONS
55	Cabbage Looper Resistance to a Nucleopolyhedrovirus Confers Cross-Resistance to Two Granuloviruses: Table 1 Environmental Entomology, 2003, 32, 286-289.	0.7	12
56	Biological control of introduced plants. , 2003, , 164-194.		2
57	Planet of Weeds: exotic plants in the landscape. , 2003, , 14-50.		0
58	Biological invasions in the context of plant communities. , 2003, , 51-88.		0
59	Predicting invasiveness from life history characteristics. , 2003, , 89-119.		1
60	Population ecology and introduced plants. , 2003, , 120-146.		0
61	Introduced plant diseases. , 2003, , 147-163.		0
62	Modeling invasive plants and their control. , 2003, , 195-223.		0
63	Action against non-indigenous species. , 2003, , 224-243.		0
64	Genetically modified plants and final conclusions. , 2003, , 244-250.		0
65	DNA polymerase gene sequences indicate western and forest tent caterpillar viruses form a new taxonomic group within baculoviruses. Journal of Invertebrate Pathology, 2002, 81, 131-147.	1.5	5
66	Multiple agents in biological control: improving the odds?. Biological Control, 2002, 24, 20-30.	1.4	317
67	Thermal ecology of western tent caterpillars Malacosoma californicum pluviale and infection by nucleopolyhedrovirus. Ecological Entomology, 2002, 27, 665-673.	1.1	30
68	Costs and stability of cabbage looper resistance to a nucleopolyhedrovirus. Evolutionary Ecology, 2002, 16, 369-385.	0.5	22
69	Eradication. , 2002, , .		2
70	Spatial and Temporal Patterns of Dispersal of Western Flower Thrips (Thysanoptera: Thripidae) in Nectarine Orchards in British Columbia. Journal of Economic Entomology, 2001, 94, 831-843.	0.8	26
71	The development of larval resistance to a nucleopolyhedrovirus is not accompanied by an increased virulence in the virus. Evolutionary Ecology, 2000, 14, 645-664.	0.5	22
72	Population Dynamics of Western Flower Thrips (Thysanoptera: Thripidae) in Nectarine Orchards in British Columbia. Journal of Economic Entomology, 2000, 93, 264-275.	0.8	36

#	Article	IF	CITATIONS
73	Eradication revisited: dealing with exotic species. Trends in Ecology and Evolution, 2000, 15, 316-320.	4.2	686
74	Direct and indirect ecological effects of biological control. Trends in Ecology and Evolution, 2000, 15, 137-139.	4.2	68
75	Sublethal Nucleopolyhedrovirus Infection Effects on Female Pupal Weight, Egg Mass Size, and Vertical Transmission in Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 2000, 29, 1268-1272.	0.7	57
76	Evaluation of Sampling Methodology for Determining the Phenology, Relative Density, and Dispersion of Western Flower Thrips (Thysanoptera: Thripidae) in Nectarine Orchards. Journal of Economic Entomology, 2000, 93, 494-502.	0.8	17
77	Dynamics of Viral Disease and Population Fluctuations in Western Tent Caterpillars (Lepidoptera:) Tj ETQq1 1 0.7	84314 rgE 0.7	BT/Overlock
78	<i>Cyzenis albicans</i> (Diptera: Tachinidae) Does Not Prevent the Outbreak of Winter Moth (Lepidoptera: Geometridae) in Birch Stands and Blueberry Plots on the Lower Mainland of British Columbia. Environmental Entomology, 1999, 28, 96-107.	0.7	16
79	Population Density and Transmission of Virus in Experimental Populations of the Western Tent Caterpillar (Lepidoptera: Lasiocampidae). Environmental Entomology, 1999, 28, 1107-1113.	0.7	16
80	MATERNAL EFFECTS IN GYPSY MOTH: ONLY SEX RATIO VARIES WITH POPULATION DENSITY. Ecology, 1998, 79, 305-314.	1.5	33
81	ERADICATION AND PEST MANAGEMENT. Annual Review of Entomology, 1998, 43, 471-491.	5.7	220
82	Influence of Larval Age on the Lethal and Sublethal Effects of the Nucleopolyhedrovirus of Trichoplusia niin the Cabbage Looper. Biological Control, 1998, 12, 119-126.	1.4	39
83	SYNCHRONY IN OUTBREAKS OF FOREST LEPIDOPTERA: A POSSIBLE EXAMPLE OF THE MORAN EFFECT. Ecology, 1998, 79, 1111-1117.	1.5	141
84	Prevalence and Persistence of Nuclear Polyhedrosis Virus in Fluctuating Populations of Forest Tent Caterpillars (Lepidoptera: Lasiocampidae) in the Area of Prince George, British Columbia. Environmental Entomology, 1997, 26, 882-887.	0.7	13
85	Debilitating Effects of Viral Diseases on Host Lepidoptera. Journal of Invertebrate Pathology, 1996, 67, 1-10.	1.5	93
86	Is fecundity correlated with resistance to viral disease in the western tent caterpillar?. Ecological Entomology, 1996, 21, 396-398.	1.1	17
87	Climate and outbreaks of the forest tent caterpillar. Ecography, 1995, 18, 353-362.	2.1	33
88	Changes in the fecundity of tent caterpillars: a correlated character of disease resistance or sublethal effect of disease?. Oecologia, 1995, 103, 475-480.	0.9	36
89	DNA Hybridization Assay for Detection of Nuclear Polyhedrosis Virus in Tent Caterpillars. Journal of Invertebrate Pathology, 1995, 66, 231-236.	1.5	14
90	Virulence and transmission of infectious diseases in humans and insects: evolutionary and demographic patterns. Trends in Ecology and Evolution, 1995, 10, 194-198.	4.2	37

#	Article	IF	CITATIONS
91	Nuclear Polyhedrosis Virus Treatment Effect on Reproductive Potential of Western Tent Caterpillar (Lepidoptera: Lasiocampidae). Environmental Entomology, 1994, 23, 864-869.	0.7	33
92	EXPERIMENTAL MANIPULATION OF THE PHENOLOGY OF EGG HATCH IN CYCLIC POPULATIONS OF TENT CATERPILLARS. Canadian Entomologist, 1992, 124, 737-742.	0.4	15
93	Sex Ratio Patterns and Population Dynamics of Western Flower Thrips (Thysanoptera: Thripidae). Environmental Entomology, 1992, 21, 322-330.	0.7	47
94	Population Cycles of Western Tent Caterpillars: Experimental Introductions and Synchrony of Fluctuations. Ecology, 1990, 71, 986-995.	1.5	62
95	How Many Insect Species are Necessary for the Biological Control of Insects?. Environmental Entomology, 1989, 18, 541-547.	0.7	123
96	Manipulation of oviposition patterns of the parasitoidCyzenis albicans (Tachinidae) in the field using plant extracts. Journal of Insect Behavior, 1989, 2, 487-503.	0.4	26
97	The effect of <i>Sphenoptera jugoslavica</i> Obenb. (Col., Buprestidae) on its host plant <i>Centaurea diffusa</i> Lam. (Compositae). Journal of Applied Entomology, 1988, 106, 25-45.	0.8	24
98	Can a General Hypothesis Explain Population Cycles of Forest Lepidoptera?. Advances in Ecological Research, 1988, 18, 179-242.	1.4	218
99	The Induced Defense Hypothesis: Does It Apply to the Population Dynamics of Insects?. , 1988, , 345-365.		23
100	Improved insect performance from hostâ€plant defoliation: winter moth on oak and apple. Ecological Entomology, 1987, 12, 409-414.	1.1	41
101	Nutrient Availability and the Deployment of Mechanical Defenses in Grazed Plants: A New Experimental Approach to the Optimal Defense Theory. Oikos, 1987, 49, 350.	1.2	19
102	Lack of Short or Long Term Inducible Defenses in the Red Alder: Western Tent Caterpillar System. Oikos, 1987, 48, 73.	1.2	36
103	Does tent caterpillar attack reduce the food quality of red alder foliage?. Oecologia, 1984, 62, 74-79.	0.9	49
104	Previous herbivore attack of red alder may improve food quality for fall webworm larvae. Oecologia, 1984, 63, 166-170.	0.9	112
105	Reproductive isolation between <i>Urophora affinis</i> and <i>U</i> . <i>quadrifasciata</i> (Diptera:) Tj ETQq1 I	l 0,78431 0.4	4 rgBT /Over
106	DIFFUSE KNAPWEED INVASION INTO RANGELAND IN THE DRY INTERIOR OF BRITISH COLUMBIA. Canadian Journal of Plant Science, 1983, 63, 981-987.	0.3	23
107	Population Cycles. Ecology, 1982, 63, 591-592.	1.5	0
108	Egg clumping, host plant selection and population regulation in Cactoblastis cactorum (Lepidoptera). Oecologia, 1981, 51, 7-13.	0.9	77

#	Article	IF	CITATIONS
109	Plant nitrogen and fluctuations of insect populations: A test with the cinnabar moth?tansy ragwort system. Oecologia, 1981, 48, 151-156.	0.9	66
110	Is the insect or the plant the driving force in the cinnabar moth ? Tansy ragwort system?. Oecologia, 1980, 47, 16-21.	0.9	50
111	Maternal influences on size and emergence time of the cinnabar moth. Canadian Journal of Zoology, 1980, 58, 1452-1457.	0.4	68
112	BEHAVIOURAL AND PHYSIOLOGICAL ADAPTATIONS OF PEA APHIDS (HOMOPTERA: APHIDIDAE) TO HIGH GROUND TEMPERATURES AND PREDATOR DISTURBANCE. Canadian Entomologist, 1979, 111, 515-519.	0.4	78
113	The effects of food quantity and quality on emergence time in the cinnabar moth. Canadian Journal of Zoology, 1979, 57, 1150-1156.	0.4	9
114	Adaptation of alarm pheromone responses of the pea aphid <i>Acyrthosiphon pisum</i> (Harris). Canadian Journal of Zoology, 1978, 56, 103-108.	0.4	96
115	A search for behavioural variation in first and last laid eggs of western tent caterpillar and an attempt to prevent a population decline. Canadian Journal of Zoology, 1978, 56, 2359-2363.	0.4	11
116	Selecting a Measure of Dispersion. Environmental Entomology, 1978, 7, 619-621.	0.7	140
117	Head flicking by tent caterpillars: a defensive response to parasite sounds. Canadian Journal of Zoology, 1978, 56, 1628-1631.	0.4	21
118	Sex Ratio Adjustment Under Food Stress: Maximization of Quality or Numbers of Offspring?. American Naturalist, 1978, 112, 381-388.	1.0	250
119	Distribution and dispersal in populations capable of resource depletion. Oecologia, 1976, 23, 255-269.	0.9	72
120	Distribution and dispersal in populations capable of resource depletion. Oecologia, 1976, 24, 7-20.	0.9	41
121	NESTING AGGREGATIONS OF THE EUGLOSSINE BEE EUPLUSIA SURINAMENSIS (HYMENOPTERA: APIDAE): INDIVIDUAL INTERACTIONS AND THE ADVANTAGE OF LIVING TOGETHER. Canadian Entomologist, 1976, 108, 1-6.	0.4	27
122	INDIRECT MEASURES OF LARVAL DISPERSAL IN THE CINNABAR MOTH, TYRIA JACOBAEAE (LEPIDOPTERA:) TJ ETQ)q0,0,0 rg 0,4	BT /Overlock
123	Population Cycles in Rodents. Scientific American, 1974, 230, 38-46.	1.0	75
124	Population Cycles in Small Mammals. Advances in Ecological Research, 1974, , 267-399.	1.4	699
125	Genetic and Social Structure of Feral House Mouse Populations on Grizzly Island, California. Ecology, 1974, 55, 747-759.	1.5	84

126Pheromones and Courtship Behavior in Butterflies. American Zoologist, 1972, 12, 545-551.0.721

#	Article	IF	CITATIONS
127	Sex Ratios in Open and Enclosed Vole Populations: Demographic Implications. American Naturalist, 1971, 105, 325-344.	1.0	49
128	Genetic, Behavioral, and Reproductive Attributes of Dispersing Field Voles Microtus pennsylvanicus and Microtus ochrogaster. Ecological Monographs, 1971, 41, 53-78.	2.4	273
129	Microtus Population Densities and Soil Nutrients in Southern Indiana Grasslands. Ecology, 1971, 52, 660-663.	1.5	12
130	Ophryocystis elektroscirrhasp. n., a Neogregarine Pathogen of the Monarch ButterflyDanaus plexippus(L.) and the Florida Queen ButterflyD. gilippus bereniceCramer1. Journal of Protozoology, 1970, 17, 300-305.	0.9	87
131	Olfaction in the Florida Queen butterfly: Honey odour receptors. Journal of Insect Physiology, 1970, 16, 573-578.	0.9	12
132	A behavioural analysis of the courtship pheromone receptors of the Queen butterfly, Danaus gilippus berenice. Journal of Insect Physiology, 1969, 15, 2117-2130.	0.9	57
133	The structure of the antennae of the Florida Queen butterfly,Danaus gilippus berenice (Cramer). Journal of Morphology, 1968, 125, 315-328.	0.6	54