## Julio BenÃ-tez

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3938447/publications.pdf
Version: 2024-02-01

A decision support system to assure high-performance maintenance service. Journal of Quality in Maintenance Engineering, 2021, 27, 651-670.

2 Partial Orders Based on the CS Decomposition. Ukrainian Mathematical Journal, 2021, 72, 1294-1313.
0.10
On the continuity and differentiability of the (dual) core inverse in $C^{*}$-algebras. Linear and
Multilinear Algebra, 2020, 68, 686-709.
0.5

Constrained consistency enforcement in AHP. Applied Mathematics and Computation, 2020, 380, 125273.
1.4

EP Elements in Rings with Involution. Bulletin of the Malaysian Mathematical Sciences Society, 2019,
42, 3409-3426.
$0.4 \quad 14$

Rank Equalities Related to the Generalized Inverses $A \hat{€} €-(B 1, C 1)$, $D \hat{€} €-(B 2, C 2)$ of Two Matrices A and D.
Symmetry, 2019, 11, 539.

Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra.
$7 \quad$ Symmetry, 2019, 11, 105.
$1.1 \quad 3$

8 Management of uncertain pairwise comparisons in AHP through probabilistic concepts. Applied Soft
Computing Journal, 2019, 78, 274-285.

Characterization of the consistent completion of analytic hierarchy process comparison matrices
9 using graph theory. Journal of Multi-Criteria Decision Analysis, 2019, 26, 3-15.

10 Centralizerâ $€^{T M}$ s applications to the (b,Âc)-inverses in rings. Revista De La Real Academia De Ciencias
Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 1739-1746.
0.6

4

11 Rank equalities related to a class of outer generalized inverse. Filomat, 2019, 33, 5611-5622.
$0.2 \quad 4$

12 Generalized core inverses of matrices. Miskolc Mathematical Notes, 2019, 20, 565.
0.3

5
13 Existence Criteria and Expressions of the (b,Âc)-Inverse in Rings and Their Applications. Mediterranean
Journal of Mathematics, 2018, 15, 1.
0.4

11

Consistent clustering of entries in large pairwise comparison matrices. Journal of Computational and
1.1

11 Applied Mathematics, 2018, 343, 98-112.

Projections for generalized inverses. Linear and Multilinear Algebra, 2018, 66, 1593-1605.
$0.5 \quad 6$

Managing Human Factors to Reduce Organisational Risk in Industry. Mathematical and Computational Applications, 2018, 23, 67.

A hybrid multi-criteria approach to GPR image mining applied to water supply system maintenance.
Journal of Applied Geophysics, 2018, 159, 754-764.

19 Multi-criteria optimization of supply schedules in intermittent water supply systems. Journal of Computational and Applied Mathematics, 2017, 309, 695-703.

The generalized inverses of tensors and an application to linear models. Computers and Mathematics With Applications, 2017, 74, 385-397.

Some generalizations and probability versions of Samuelson's inequality. Mathematical Inequalities and Applications, 2017, , 1-12.

I decide, therefore I am (relevant!): A projectâ€based learning experience in linear algebra. Computer Applications in Engineering Education, 2016, 24, 481-492.

New additive results for the generalized Drazin inverse in a Banach algebra. Filomat, 2016, 30,
2289-2294.

Co-EP Banach algebra elements. Banach Journal of Mathematical Analysis, 2015, 9, 27-41.
$0.4 \quad 1$

25 Some additive results on Drazin inverse. Applied Mathematics, 2015, 30, 479-490.
0.6

Consistent completion of incomplete judgments in decision making using AHP. Journal of Computational and Applied Mathematics, 2015, 290, 412-422.

On the spectra of some combinations of two generalized quadratic matrices. Applied Mathematics and
Computation, 2015, 268, 978-990.

Characterization of Consistent Completion of Reciprocal Comparison Matrices. Abstract and Applied Analysis, 2014, 2014, 1-12.

Further results on the reverse order law for the group inverse in rings. Applied Mathematics and
Computation, 2014, 229, 316-326.
1.4

A simple formula to find the closest consistent matrix to a reciprocal matrix. Applied Mathematical Modelling, 2014, 38, 3968-3974.
2.2

Joint stakeholder decision-making on the management of the Silaoâ€"Romita aquifer using AHP.
Environmental Modelling and Software, 2014, 51, 310-322.

On the continuity of the group inverse in $\$ \mathrm{C}^{\wedge *} \$$-algebras. Banach Journal of Mathematical Analysis,
2014, 8, 204-213.

Some learning objects to explain Kepler's laws. Computer Applications in Engineering Education, 2013, 21, 1-7.

Equalities of ideals associated with two projections in rings with involution. Linear and Multilinear Algebra, 2013, 61, 1419-1435.

Expressions for generalized inverses of square matrices. Linear and Multilinear Algebra, 2013, 61,
1536-1554.

Design and use of a learning object for finding complex polynomial roots. International Journal of
Mathematical Education in Science and Technology, 2013, 44, 365-376.
37 On nonsingularity of combinations of three group invertible matrices and three tripotent matrices. Linear and Multilinear Algebra, 2013, 61, 463-481.
0.5

0

A short proof of a matrix decomposition with applications. Linear Algebra and Its Applications, 2013, 438, 1398-1414.
overflow="scroll" > <mml:mrow > [mml:msup](mml:msup) <mml:mrow > <mml:mi
39 mathvariant="italic" $>$ aa</mml:mi $></ \mathrm{mml}: \mathrm{mrow}\rangle<\mathrm{mml}: \mathrm{mrow}\rangle<\mathrm{mml}: \mathrm{mo}\rangle$ â€</mml:mo></mml:mrow></mml:msup><|mml:mrow></mr
and <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si2.gif"
overflow="scroll" $\rangle\langle\mathrm{mml}: \mathrm{mrow}\rangle\langle\mathrm{mml}: \mathrm{msup}\rangle\langle\mathrm{mml}: \mathrm{mrow}\rangle<\mathrm{mml}: \mathrm{mi}\rangle$ a</mml:mi></mml:mrow $\rangle\langle\mathrm{mml}: \mathrm{mrow}\rangle\langle\mathrm{mml}: \mathrm{mo}\rangle$ â€</mml:mo>

40 An approach to AHP decision in a dynamic context. Decision Support Systems, 2012, 53, 499-506.
$3.5 \quad 42$
Improving consistency in AHP decision-making processes. Applied Mathematics and Computation, 2012,
$219,2432-2441$.
$1.4 \quad 50$

Invertibility in rings of the commutatorabâ€\%oâ€"â€\%oba, whereaba=aandbab=b. Linear and Multilinear Algebra,

```
45 On linear combinations of generalized involutive matrices. Linear and Multilinear Algebra, 2011, 59,
1221-1236.
```

$47 \quad$ Achieving matrix consistency in AHP through linearization. Applied Mathematical Modelling, 2011, 35, $449-4457$

48 A projective invariant generalization of the deÂCasteljau algorithm. CAD Computer Aided Design, 2011, 43, 3-11.
$1.4 \quad 0$
-

Balancing consistency and expert judgment in AHP. Mathematical and Computer Modelling, 2011, 54,
2.0

58
1785-1790.

On nonsingularity of combinations of two group invertible matrices and two tripotent matrices. Linear and Multilinear Algebra, 2011, 59, 1409-1417.

5

Additive results for the group inverse in an algebra with applications to block operators. Linear and Multilinear Algebra, 2011, 59, 279-289.

On the spectrum of linear combinations of two projections inC*-algebras. Linear and Multilinear
Algebra, 2010, 58, 673-679.

```
Some results on partial ordering and reverse order law of elements of <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="sil.gif"
overflow="scrol|"> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>â^-</mml:mo></mml:msup ></mml:math>-algebras. }
    lournal of Mathematical Analvsis and Applications, 2010. 370. 295-301.
```

Nonsingularity and group invertibility of linear combinations of twok-potent matrices. Linear and
Multilinear Algebra, 2010, 58, 1023-1035.
Mooreâ€"Penrose inverses and commuting elements of <mml:math

| 57 | Mooreâ€"Penrose inverses and commuting elements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="sil.gif" |
| :---: | :---: |
|  | overflow="scroll">[mml:msup](mml:msup)[mml:mi](mml:mi)C</mml:mi> [mml:mo](mml:mo)ầ-</mml:mo></mml:msup></mml:m Iournal of Mathematical Analvsis and Applications, 2008, 345, 766-770. |
| 8 | On linear combinations of two commuting hypergeneralized projectors. Computers and Mathematics With Applications, 2008, 56, 2481-2489. |

        overflow="scroll"> <mml:msup> <mml:mi> C </mml:mi> <mml:mo>â'-</mml:mo> </mml:msup> </mml:math>-algebras. \({ }^{0}\)61 Idempotency of linear combinations of three idempotent matrices, two of which are commuting.Linear Algebra and Its Applications, 2007, 424, 320-337.\(0.4 \quad 25\)
    $\{k\}$-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 2006, 28, 9-25.0.723
63 Matrices whose powers approximate the identity. Applied Mathematics Letters, 2006, 19, 1249-1254.

