
André M Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937968/publications.pdf Version: 2024-02-01

ΔΝΟΡÃO Μ COLEMAN

#	Article	lF	CITATIONS
1	National microalgae biofuel production potential and resource demand. Water Resources Research, 2011, 47, .	4.2	222
2	A Physically Based Runoff Routing Model for Land Surface and Earth System Models. Journal of Hydrometeorology, 2013, 14, 808-828.	1.9	187
3	Municipal wastewater sludge as a sustainable bioresource in the United States. Journal of Environmental Management, 2017, 197, 673-680.	7.8	163
4	Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States. Renewable and Sustainable Energy Reviews, 2018, 82, 2640-2651.	16.4	135
5	Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	111
6	Development of high resolution land surface parameters for the Community Land Model. Geoscientific Model Development, 2012, 5, 1341-1362.	3.6	78
7	A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environmental Science & Technology, 2013, 47, 4840-4849.	10.0	77
8	A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy, 2014, 64, 276-290.	5.7	77
9	Siting Algae Cultivation Facilities for Biofuel Production in the United States: Trade-Offs between Growth Rate, Site Constructability, Water Availability, and Infrastructure. Environmental Science & Technology, 2014, 48, 3559-3566.	10.0	59
10	Municipal wastewater sludge as a renewable, cost-effective feedstock for transportation biofuels using hydrothermal liquefaction. Journal of Environmental Management, 2020, 270, 110852.	7.8	45
11	An integrated assessment of location-dependent scaling for microalgae biofuel production facilities. Algal Research, 2014, 5, 79-94.	4.6	42
12	Wet waste-to-energy resources in the United States. Resources, Conservation and Recycling, 2018, 137, 32-47.	10.8	40
13	A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resources Management, 2015, 29, 5185-5200.	3.9	38
14	Hydraulic geometry and microtopography of tidal freshwater forested wetlands and implications for restoration, Columbia River, U.S.A Ecohydrology and Hydrobiology, 2008, 8, 339-361.	2.3	31
15	Assessment of algal biofuel resource potential in the United States with consideration of regional water stress. Algal Research, 2019, 37, 30-39.	4.6	29
16	Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: Opportunities and challenges. Journal of Cleaner Production, 2021, 321, 128779.	9.3	27
17	Observed Spatiotemporal Changes in the Mechanisms of Extreme Water Available for Runoff in the Western United States. Geophysical Research Letters, 2019, 46, 767-775.	4.0	26
18	An assessment of land availability and price in the coterminous United States for conversion to algal biofuel production. Biomass and Bioenergy, 2012, 47, 483-497.	5.7	24

André M Coleman

#	Article	IF	CITATIONS
19	Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S Renewable Energy, 2016, 93, 201-214.	8.9	21
20	Balancing Water Sustainability and Productivity Objectives in Microalgae Cultivation: Siting Open Ponds by Considering Seasonal Water-Stress Impact Using AWARE-US. Environmental Science & Technology, 2020, 54, 2091-2102.	10.0	17
21	Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs. Algal Research, 2014, 5, 215-225.	4.6	15
22	The thermodynamic influence of subgrid orography in a global climate model. Climate Dynamics, 2002, 20, 31-44.	3.8	14
23	Evaluating nextâ€generation intensity–duration–frequency curves for design flood estimates in the snowâ€dominated western United States. Hydrological Processes, 2020, 34, 1255-1268.	2.6	14
24	Growth modeling to evaluate alternative cultivation strategies to enhance national microalgal biomass production. Algal Research, 2020, 49, 101939.	4.6	14
25	A spatially based area–time inundation index model developed to assess habitat opportunity in tidal–fluvial wetlands and restoration sites. Ecological Engineering, 2015, 82, 624-642.	3.6	10
26	Incorporating Climate Nonstationarity and Snowmelt Processes in Intensity–Duration–Frequency Analyses with Case Studies in Mountainous Areas. Journal of Hydrometeorology, 2019, 20, 2331-2346.	1.9	10
27	Temporal land cover analysis for net ecosystem improvement. Ecohydrology and Hydrobiology, 2013, 13, 84-96.	2.3	8
28	Strain Selection, Biomass to Biofuel Conversion, and Resource Colocation have Strong Impacts on the Economic Performance of Algae Cultivation Sites. Frontiers in Energy Research, 2014, 2, .	2.3	8
29	Hydrologic and Erosion Models to Assess Land Use and Management Practices Affecting Soil Erosion. Journal of Hydrologic Engineering - ASCE, 2009, 14, 27-41.	1.9	7
30	Application of the diminishing returns concept in the hydroecologic restoration of riverscapes. Landscape Ecology, 2012, 27, 671-682.	4.2	7
31	Assessment of algal farm designs using a dynamic modular approach. Algal Research, 2014, 5, 264-273.	4.6	5
32	Indexing habitat opportunity for juvenile anadromous fishes in tidal-fluvial wetland systems. Ecological Indicators, 2021, 124, 107422.	6.3	5
33	Datasets for characterizing extreme events relevant to hydrologic design over the conterminous United States. Scientific Data, 2022, 9, 154.	5.3	5
34	Comparison of experimental and computational methods for discharge measurements from tidal wetlands. River Research and Applications, 2020, 36, 1954-1961.	1.7	3
35	A CIS-Based Adaptive Management Decision Support System to Develop a Multi-Objective Framework: A Case Study Utilizing CIS Technologies and Physically-Based Models to Achieve Improved Decision Making for Site Management. Journal of Map and Geography Libraries, 2008, 4, 269-284.	0.1	2
36	Enhancing Hydrologic Design by Next-Generation Intensity-Duration-Frequency Curves Considering Snowmelt and Climate Nonstationarity. , 2019, , .		1

#	Article	lF	CITATIONS
37	GeoSpatial Infrastructure at the U.S. Department of Energy's Hanford Site. Journal of Map and Geography Libraries, 2008, 4, 83-95.	0.1	0
38	Estimating the Maximum Achievable Productivity in Outdoor Ponds: Microalgae Biomass Growth Modeling and Climate-Simulated Culturing. , 2016, , 113-137.		0