
John C Mosher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience, 2011, 2011, 1-13.	1.7	2,564
2	Electromagnetic brain mapping. IEEE Signal Processing Magazine, 2001, 18, 14-30.	5.6	1,373
3	Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering, 1992, 39, 541-557.	4.2	920
4	EEG and MEC: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 1999, 46, 245-259.	4.2	697
5	A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and Clinical Neurophysiology, 1998, 107, 159-173.	0.3	336
6	Source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Signal Processing, 1999, 47, 332-340.	5.3	327
7	Recursive MUSIC: A framework for EEG and MEG source localization. IEEE Transactions on Biomedical Engineering, 1998, 45, 1342-1354.	4.2	325
8	Error bounds for EEG and MEG dipole source localization. Electroencephalography and Clinical Neurophysiology, 1993, 86, 303-321.	0.3	220
9	Ripple classification helps to localize the seizureâ€onset zone in neocortical epilepsy. Epilepsia, 2013, 54, 370-376.	5.1	193
10	MEC-based imaging of focal neuronal current sources. IEEE Transactions on Medical Imaging, 1997, 16, 338-348.	8.9	160
11	Microtesla MRI of the human brain combined with MEG. Journal of Magnetic Resonance, 2008, 194, 115-120.	2.1	159
12	A fingerprint of the epileptogenic zone in human epilepsies. Brain, 2018, 141, 117-131.	7.6	136
13	MEG/EEG Group Analysis With Brainstorm. Frontiers in Neuroscience, 2019, 13, 76.	2.8	135
14	Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain, 2016, 139, 2935-2947.	7.6	129
15	EEG Source Localization and Imaging Using Multiple Signal Classification Approaches. Journal of Clinical Neurophysiology, 1999, 16, 225-238.	1.7	126
16	Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clinical Neurophysiology, 2004, 115, 508-522.	1.5	96
17	Connections of the limbic network: A corticocortical evoked potentials study. Cortex, 2015, 62, 20-33.	2.4	82
18	Time-Frequency Strategies for Increasing High-Frequency Oscillation Detectability in Intracerebral EEG. IEEE Transactions on Biomedical Engineering, 2016, 63, 2595-2606.	4.2	80

#	Article	IF	CITATIONS
19	Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: A cortico-cortical evoked potential study. Clinical Neurophysiology, 2012, 123, 252-260.	1.5	77
20	Localization of realistic cortical activity in MEG using current multipoles. NeuroImage, 2004, 22, 779-793.	4.2	76
21	Rapidly recomputable EEG forward models for realistic head shapes. Physics in Medicine and Biology, 2001, 46, 1265-1281.	3.0	74
22	Generic head models for atlas-based EEG source analysis. Human Brain Mapping, 2006, 27, 129-143.	3.6	74
23	In vivo human hippocampal cingulate connectivity: A corticocortical evoked potentials (CCEPs) study. Clinical Neurophysiology, 2013, 124, 1547-1556.	1.5	70
24	Functional Connectivity Estimated from Intracranial EEG Predicts Surgical Outcome in Intractable Temporal Lobe Epilepsy. PLoS ONE, 2013, 8, e77916.	2.5	68
25	Parallel MRI at microtesla fields. Journal of Magnetic Resonance, 2008, 192, 197-208.	2.1	65
26	Magnetic source imaging and ictal SPECT in MRIâ€negative neocortical epilepsies: Additional value and comparison with intracranial EEG. Epilepsia, 2013, 54, 359-369.	5.1	56
27	Investigations of dipole localization accuracy in MEG using the bootstrap. NeuroImage, 2005, 25, 355-368.	4.2	54
28	A unified view on beamformers for M/EEG source reconstruction. NeuroImage, 2022, 246, 118789.	4.2	50
29	Connectivity of the human insula: A cortico-cortical evoked potential (CCEP) study. Cortex, 2019, 120, 419-442.	2.4	49
30	The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: A study of the surgical resection outcome. Epilepsy Research, 2014, 108, 1581-1590.	1.6	48
31	Comparison of beamformer implementations for MEG source localization. NeuroImage, 2020, 216, 116797.	4.2	48
32	Magnetic source imaging in non-lesional neocortical epilepsy: Additional value and comparison with ICEEG. Epilepsy and Behavior, 2012, 24, 234-240.	1.7	47
33	Correlation between magnetoencephalography-based "clusterectomy―and postoperative seizure freedom. Neurosurgical Focus, 2013, 34, E9.	2.3	46
34	Multi-Channel SQUID System for MEG and Ultra-Low-Field MRI. IEEE Transactions on Applied Superconductivity, 2007, 17, 839-842.	1.7	45
35	Reorganization of posterior language area in temporal lobe epilepsy: A cortico-cortical evoked potential study. Epilepsy Research, 2013, 103, 73-82.	1.6	45
36	Assessment of the Utility of Ictal Magnetoencephalography in the Localization of the Epileptic Seizure Onset Zone. JAMA Neurology, 2018, 75, 1264.	9.0	38

#	Article	IF	CITATIONS
37	Dipole localization of human induced focal afterdischarge seizure in simultaneous magnetoencephalography and electrocorticography. Brain Topography, 2001, 14, 101-116.	1.8	36
38	Use of simultaneous depth and MEG recording may provide complementary information regarding the epileptogenic region. Epileptic Disorders, 2012, 14, 298-303.	1.3	35
39	Epileptic focus localization based on resting state interictal MEG recordings is feasible irrespective of the presence or absence of spikes. Clinical Neurophysiology, 2015, 126, 667-674.	1.5	34
40	Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Biomedical Engineering, 2000, 47, 1248-1260.	4.2	33
41	SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2005, 15, 635-639.	1.7	33
42	Connectivity of the frontal and anterior insular network: a cortico-cortical evoked potential study. Journal of Neurosurgery, 2016, 125, 90-101.	1.6	32
43	Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Research, 2012, 102, 71-77.	1.6	30
44	Voxel-based morphometric MRI post-processing in MRI-negative focal cortical dysplasia followed by simultaneously recorded MEG and stereo-EEG. Epilepsy Research, 2012, 100, 188-193.	1.6	29
45	lmag(in)ing seizure propagation: MEGâ€guided interpretation of epileptic activity from a deep source. Human Brain Mapping, 2012, 33, 2797-2801.	3.6	25
46	lctal infraslow activity in stereoelectroencephalography: Beyond the "DC shift― Clinical Neurophysiology, 2016, 127, 117-128.	1.5	25
47	Learning to define an electrical biomarker of the epileptogenic zone. Human Brain Mapping, 2020, 41, 429-441.	3.6	25
48	Sensitivity of scalp 10-20 EEG and magnetoencephalography. Epileptic Disorders, 2013, 15, 27-31.	1.3	23
49	Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators. Clinical Neurophysiology, 2013, 124, 1277-1282.	1.5	23
50	Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: Successful localization during focal seizure. Epilepsy Research, 2012, 101, 191-196.	1.6	22
51	Connectivity in ictal single photon emission computed tomography perfusion: a cortico-cortical evoked potential study. Brain, 2017, 140, 1872-1884.	7.6	22
52	Generalized 3-Hz spike-and-wave complexes emanating from focal epileptic activity in pediatric patients. Epilepsy and Behavior, 2011, 20, 103-106.	1.7	21
53	<title>Multiple dipole modeling of spatiotemporal MEG data</title> . , 1990, 1351, 364.		15
54	Magnetoencephalography's higher sensitivity to epileptic spikes may elucidate the profile of electroencephalographically negative epileptic seizures. Epilepsy and Behavior, 2012, 23, 171-173.	1.7	15

#	Article	IF	CITATIONS
55	Good scientific practice in EEG and MEG research: Progress and perspectives. NeuroImage, 2022, 257, 119056.	4.2	15
56	Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Frontiers in Neurology, 2021, 12, 722986.	2.4	14
57	The use of contact heat evoked potential stimulator (CHEPS) in magnetoencephalography for pain research. Journal of Neuroscience Methods, 2013, 220, 55-63.	2.5	13
58	Automated MRI Volumetric Analysis in Patients with Rasmussen Syndrome. American Journal of Neuroradiology, 2016, 37, 2348-2355.	2.4	13
59	Localization of the ictal onset zone with MEG using minimum norm estimate of a narrow band at seizure onset versus standard single current dipole modeling. Clinical Neurophysiology, 2013, 124, 1915-1918.	1.5	11
60	Magnetoencephalographic Recordings in Infants Using a Standard-Sized Array: Technical Adequacy and Diagnostic Yield. Journal of Clinical Neurophysiology, 2017, 34, 461-468.	1.7	11
61	Interconnections in superior temporal cortex revealed by musicogenic seizure propagation. Journal of Neurology, 2012, 259, 2251-2254.	3.6	10
62	Intractable focal epilepsy contralateral to the side of facial atrophy in Parry–Romberg syndrome. Neurological Sciences, 2012, 33, 165-168.	1.9	10
63	A magnetoencephalography study of visual processing of pain anticipation. Journal of Neurophysiology, 2014, 112, 276-286.	1.8	10
64	Magnetoencephalographic Identification of Epileptic Focus in Children With Generalized Electroencephalographic (EEG) Features but Focal Imaging Abnormalities. Journal of Child Neurology, 2017, 32, 981-995.	1.4	10
65	Heterotopia or overlaying cortex: What about in-between?. Epilepsy & Behavior Case Reports, 2019, 11, 4-9.	1.5	10
66	Scalable and Robust Tensor Decomposition of Spontaneous Stereotactic EEG Data. IEEE Transactions on Biomedical Engineering, 2019, 66, 1549-1558.	4.2	10
67	Gamma band functional connectivity reduction in patients with amnestic mild cognitive impairment and epileptiform activity. Brain Communications, 2022, 4, fcac012.	3.3	10
68	Toward SQUID-Based Direct Measurement of Neural Currents by Nuclear Magnetic Resonance. IEEE Transactions on Applied Superconductivity, 2007, 17, 854-857.	1.7	9
69	Different cortical involvement pattern of generalized and localized spasms: A magnetoencephalography study. Epilepsy and Behavior, 2011, 22, 599-601.	1.7	9
70	Implanted medical devices or other strong sources of interference are not barriers to magnetoencephalographic recordings in epilepsy patients. Clinical Neurophysiology, 2013, 124, 1283-1289.	1.5	8
71	Magnetoencephalography Correlate of EEG POSTS (Positive Occipital Sharp Transients of Sleep). Journal of Clinical Neurophysiology, 2013, 30, 235-237.	1.7	8
72	Interictal Infraslow Activity in Stereoelectroencephalography. Journal of Clinical Neurophysiology, 2016, 33, 141-148.	1.7	8

#	Article	IF	CITATIONS
73	Non-destructive evaluation with a linear array of 11 HTS SQUIDs. IEEE Transactions on Applied Superconductivity, 2001, 11, 1303-1306.	1.7	7
74	Validation of semiâ€automated anatomically labeled SEEG contacts in a brain atlas for mapping connectivity in focal epilepsy. Epilepsia Open, 2021, 6, 493-503.	2.4	6
75	Feasibility of magnetoencephalography recording in an epilepsy patient with implanted responsive cortical stimulation device. Clinical Neurophysiology, 2013, 124, 1705-1706.	1.5	5
76	The FAST graph: A novel framework for the anatomically-guided visualization and analysis of cortico-cortical evoked potentials. Epilepsy Research, 2020, 161, 106264.	1.6	5
77	Effective connectivity differs between focal cortical dysplasia types I and II. Epilepsia, 2021, 62, 2753-2765.	5.1	5
78	Fetal magnetocardiography: Methods for rapid data reduction. Review of Scientific Instruments, 1997, 68, 1587-1595.	1.3	4
79	Magnetoencephalography Reveals a Unique Neurophysiological Profile of Focal-Onset Epileptic Spasms. Tohoku Journal of Experimental Medicine, 2013, 229, 147-151.	1.2	4
80	Indications for Inpatient Magnetoencephalography in Children – An Institution's Experience. Frontiers in Human Neuroscience, 2021, 15, 667777.	2.0	4
81	Generalized sidelobe canceller for magnetoencephalography arrays. , 2009, 2009, 149-152.		3
82	Cephalic aura after frontal lobe resection. Journal of Clinical Neuroscience, 2014, 21, 1450-1452.	1.5	3
83	Using ultra-low field nuclear magnetic resonance for direct neural current measurements. International Congress Series, 2007, 1300, 582-585.	0.2	2
84	Multi-sensor system for simultaneous ultra-low-field MRI and MEG. International Congress Series, 2007, 1300, 631-634.	0.2	2
85	MEG May Reveal Hidden Population of Spikes in Epilepsy With Porencephalic Cyst/Encephalomalacia. Journal of Clinical Neurophysiology, 2017, 34, 546-549.	1.7	2
86	Source estimation. International Congress Series, 2007, 1300, 11-14.	0.2	0
87	175 Language Reorganization in Temporal Lobe Epilepsy. Neurosurgery, 2012, 71, E568-E569.	1.1	Ο