Magdiel Inggrid Setyawati

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/3937820/magdiel-inggrid-setyawati-publications-by-citations.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 64 5,032 34 h-index g-index citations papers 66 6.19 11 5,720 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
64	Antimicrobial Gold Nanoclusters. <i>ACS Nano</i> , 2017 , 11, 6904-6910	16.7	352
63	Antimicrobial silver nanomaterials. <i>Coordination Chemistry Reviews</i> , 2018 , 357, 1-17	23.2	347
62	Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. <i>Nature Communications</i> , 2013 , 4, 1673	17.4	326
61	Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. <i>Nature Nanotechnology</i> , 2019 , 14, 279-286	28.7	253
60	Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. <i>ACS Nano</i> , 2016 , 10, 7934-4	12 16.7	252
59	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. <i>Chemical Society Reviews</i> , 2015 , 44, 8174-99	58.5	230
58	Highly luminescent silver nanoclusters with tunable emissions: cyclic reductiondecomposition synthesis and antimicrobial properties. <i>NPG Asia Materials</i> , 2013 , 5, e39-e39	10.3	207
57	Directing Assembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Disassembly and Disassembly of 2D MoS Nanosheets with DNA for Drug Delivery. <i>ACS Applied Materials & Disassembly and </i></i></i></i>	9.5	199
56	Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. <i>Advanced Functional Materials</i> , 2014 , 24, 5936-5955	15.6	180
55	Nanoparticles strengthen intracellular tension and retard cellular migration. <i>Nano Letters</i> , 2014 , 14, 83	i -8 11.5	168
54	The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. <i>Biomaterials</i> , 2011 , 32, 8218-25	15.6	161
53	Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. <i>ACS Nano</i> , 2017 , 11, 5020-5030	16.7	157
52	The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. <i>Biomaterials</i> , 2014 , 35, 6707-15	15.6	138
51	Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. <i>Biomaterials</i> , 2013 , 34, 10133-42	15.6	123
50	Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. <i>Nano Research</i> , 2014 , 7, 301-307	10	121
49	Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability. <i>ACS Nano</i> , 2017 , 11, 2764-2772	16.7	105
48	Mechanistic Investigation of the Biological Effects of SiO[ITiO[land ZnO Nanoparticles on Intestinal Cells. <i>Small</i> , 2015 , 11, 3458-68	11	101

47	Tuning Endothelial Permeability with Functionalized Nanodiamonds. ACS Nano, 2016, 10, 1170-81	16.7	101
46	Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2014 , 6, 21822-31	9.5	91
45	Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. <i>Small</i> , 2015 , 11, 702-12	11	87
44	In vivo and ex vivo proofs of concept that cetux imab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. <i>Biomaterials</i> , 2015 , 63, 58-69	15.6	78
43	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. <i>Chemistry of Materials</i> , 2018 , 30, 2800-2808	9.6	77
42	Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. <i>ACS Applied Materials & Distribution and ACS Applied Materials & Distribution and ACS Applied Materials & Distribution and ACS Applied Materials & Distribution and Distributi</i>	9.5	76
41	Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 7571-82	8.3	76
40	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. <i>Nano Research</i> , 2014 , 7, 805-815	10	75
39	DNA Nanostructures Carrying Stoichiometrically Definable Antibodies. <i>Small</i> , 2016 , 12, 5601-5611	11	72
38	Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy. <i>Small</i> , 2017 , 13, 1700527	11	64
37	Electrochemical Quantification of Escherichia coli with DNA Nanostructure. <i>Advanced Functional Materials</i> , 2015 , 25, 3840-3846	15.6	64
36	Protecting microRNAs from RNase degradation with steric DNA nanostructures. <i>Chemical Science</i> , 2017 , 8, 1062-1067	9.4	53
35	Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 633-40	5.4	52
34	Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. <i>Particle and Fibre Toxicology</i> , 2018 , 15, 46	8.4	49
33	Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 6690-6703	9.5	48
32	Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. <i>Environmental Toxicology</i> , 2015 , 30, 1459-69	4.2	44
31	Nano-TiO Drives Epithelial-Mesenchymal Transition in Intestinal Epithelial Cancer Cells. <i>Small</i> , 2018 , 14, e1800922	11	42
30	Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. <i>International Journal of Food Microbiology</i> , 2014 , 191, 24-31	5.8	34

29	Inorganic Nanomaterials as Highly Efficient Inhibitors of Cellular Hepatic Fibrosis. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	34
28	Nanotoxicology of common metal oxide based nanomaterials: their ROS-y and non-ROS-y consequences. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2013 , 8, 205-217	1.3	33
27	Phage based green chemistry for gold ion reduction and gold retrieval. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 910-7	9.5	29
26	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 784-793	3.1	29
25	Composite Hydrogels in Three-Dimensional Models. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 611	5.8	28
24	Naked-eyelrecognition: Emerging gold nano-family for visual sensing. <i>Applied Materials Today</i> , 2018 , 11, 166-188	6.6	28
23	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. <i>Bioactive Materials</i> , 2021 , 6, 941-950	16.7	28
22	Decoupling the Direct and Indirect Biological Effects of ZnO Nanoparticles Using a Communicative Dual Cell-Type Tissue Construct. <i>Small</i> , 2016 , 12, 647-57	11	25
21	Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. <i>Nanotoxicology</i> , 2019 , 13, 682-700	5.3	25
20	Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production. <i>Journal of Biotechnology</i> , 2007 , 132, 38-43	3.7	21
19	Self-immobilized recombinant Acetobacter xylinum for biotransformation. <i>Biochemical Engineering Journal</i> , 2009 , 43, 78-84	4.2	20
18	Observing antimicrobial process with traceable gold nanoclusters. <i>Nano Research</i> , 2021 , 14, 1026-1033	10	17
17	Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. <i>Environmental Science & Environmental S</i>	10.3	16
16	Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. <i>Small</i> , 2020 , 16, e2000963	11	10
15	Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. <i>Small</i> , 2020 , 16, e2001246	511	9
14	Biomolecular interaction and kinematics differences between P25 and E171 TiO2 nanoparticles. <i>NanoImpact</i> , 2018 , 12, 51-57	5.6	8
13	Particulate matter from indoor environments of classroom induced higher cytotoxicity and leakiness in human microvascular endothelial cells in comparison with those collected from corridor. <i>Indoor Air</i> , 2017 , 27, 551-563	5.4	5
12	Pilot deep RNA sequencing of worker blood samples from Singapore printing industry for occupational risk assessment. <i>NanoImpact</i> , 2020 , 19, 100248-100248	5.6	5

LIST OF PUBLICATIONS

11	Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000314	5.5	5
10	Nanotoxicity: Mechanistic Investigation of the Biological Effects of SiO2, TiO2, and ZnO Nanoparticles on Intestinal Cells (Small 28/2015). <i>Small</i> , 2015 , 11, 3390-3390	11	4
9	Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells <i>NanoImpact</i> , 2022 , 25, 100379	5.6	3
8	Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces <i>NanoImpact</i> , 2021 , 22, 100325	5.6	3
7	Self-Assembly of Solubilized Human Hair Keratins. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 83-89	5.5	3
6	Nanomedicine: Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications (Adv. Funct. Mater. 38/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 5930-5930	15.6	2
5	Nanotoxicity: Biomimicry 3D Gastrointestinal Spheroid Platform for the Assessment of Toxicity and Inflammatory Effects of Zinc Oxide Nanoparticles (Small 6/2015). <i>Small</i> , 2015 , 11, 760-760	11	2
4	Association of nanoparticle exposure with serum metabolic disorders of healthy adults in printing centers <i>Journal of Hazardous Materials</i> , 2022 , 432, 128710	12.8	2
3	A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. <i>Environmental Science: Nano</i> , 2020 , 7, 3155-3166	7.1	1
2	Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. <i>Journal of Biomedical Materials Research - Part A</i> , 2022 , 110, 92-104	5.4	1
1	Biosensors: Electrochemical Quantification of Escherichia coli with DNA Nanostructure (Adv. Funct. Mater. 25/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 3979-3979	15.6	О