Pankul Dhingra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937513/publications.pdf

Version: 2024-02-01

		10	040056	1199594		
15	245		9		12	
papers	citations		h-index		g-index	
15	15		15		461	
all docs	docs citations		times ranked		citing authors	

#	Article	IF	Citations
1	Holeâ€Transporting Materials for Perovskiteâ€Sensitized Solar Cells. Energy Technology, 2016, 4, 891-938.	3.8	50
2	Towards toxicity removal in lead based perovskite solar cells by compositional gradient using manganese chloride. Journal of Materials Chemistry C, 2016, 4, 3101-3105.	5 . 5	49
3	Current-Matched III–V/Si Epitaxial Tandem Solar Cells with 25.0% Efficiency. Cell Reports Physical Science, 2020, 1, 100208.	5. 6	36
4	20%-efficient epitaxial GaAsP/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2019, 202, 110144.	6.2	33
5	Relaxed GaP on Si with low threading dislocation density. Applied Physics Letters, 2020, 116, 042102.	3.3	14
6	2.0–2.2ÂeV AlGaInP solar cells grown by molecular beam epitaxy. Solar Energy Materials and Solar Cells, 2021, 219, 110774.	6.2	11
7	High-Quality GaAs Planar Coalescence over Embedded Dielectric Microstructures Using an All-MBE Approach. Crystal Growth and Design, 2019, 19, 3085-3091.	3.0	10
8	Low-threshold InP quantum dot and InGaP quantum well visible lasers on silicon (001). Optica, 2021, 8, 1495.	9.3	10
9	Graded buffer Bragg reflectors with high reflectivity and transparency for metamorphic optoelectronics. Journal of Applied Physics, 2021, 129, 173102.	2.5	9
10	Enhanced room temperature infrared LEDs using monolithically integrated plasmonic materials. Optica, 2020, 7, 1355.	9.3	9
11	InP quantum dots for dislocation-tolerant, visible light emitters on Si. Applied Physics Letters, 2020, 117, .	3.3	8
12	Challenges of relaxed <i>n</i> -type GaP on Si and strategies to enable low threading dislocation density. Journal of Applied Physics, 2021, 130, 243104.	2.5	5
13	Effects of Graded Buffer Design and Active Region Structure on GaAsP Single-Junction Solar Cells Grown on GaP/Si Templates. , 2020, , .		1
14	Comparison of 1.9 eV InGaP front- and rear-junction solar cells grown on Si. , 2021, , .		0
15	Reducing the dependence of threading dislocation density on doping for GaAsP/GaP on Si. , 2021, , .		O