Junsheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937505/publications.pdf

Version: 2024-02-01

687363 477307 32 859 13 29 citations h-index g-index papers 32 32 32 952 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical biosensors: an exhaustive and comprehensive review. Analyst, The, 2020, 145, 1605-1628.	3.5	418
2	Separation and characterization of microplastic and nanoplastic particles in marine environment. Environmental Pollution, 2022, 297, 118773 .	7.5	55
3	A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence. Sensors, 2013, 13, 16075-16089.	3.8	42
4	Induced charge effects on electrokinetic entry flow. Physics of Fluids, 2017, 29, .	4.0	35
5	Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet. Biomicrofluidics, 2015, 9, 044102.	2.4	32
6	Detection of size spectrum of microalgae cells in an integrated underwater microfluidic device. Journal of Experimental Marine Biology and Ecology, 2015, 473, 129-137.	1.5	26
7	Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip. Electrophoresis, 2019, 40, 969-978.	2.4	24
8	A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing. Micromachines, 2016, 7, 198.	2.9	16
9	Applications and perspectives on microfluidic technologies in ships and marine engineering: a review. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	16
10	Microfluidics for the rapid detection of <i>Staphylococcus aureus</i> using antibody-coated microspheres. Bioengineered, 2020, 11, 1137-1145.	3.2	16
11	Sheathless electrokinetic particle separation in a bifurcating microchannel. Biomicrofluidics, 2016, 10, 054104.	2.4	15
12	Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water. International Journal of Molecular Sciences, 2015, 16, 25560-25575.	4.1	14
13	Serial Separation of Microalgae in a Microfluidic Chip Under Inertial and Dielectrophoretic Forces. IEEE Sensors Journal, 2020, 20, 14607-14616.	4.7	14
14	An End-to-End Oil-Spill Monitoring Method for Multisensory Satellite Images Based on Deep Semantic Segmentation. Sensors, 2020, 20, 725.	3.8	14
15	Detection of nonâ€small cell lung cancer cells based on microfluidic polarization microscopic image analysis. Electrophoresis, 2019, 40, 1202-1211.	2.4	12
16	An induced current method for measuring zeta potential of electrolyte solution–air interface. Journal of Colloid and Interface Science, 2014, 416, 101-104.	9.4	11
17	A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution. Scientific Reports, 2016, 6, 23165.	3.3	10
18	Chargeâ€based separation of particles and cells with similar sizes via the wallâ€induced electrical lift. Electrophoresis, 2017, 38, 320-326.	2.4	10

#	Article	IF	CITATIONS
19	Detection of microalgae objects based on the Improved YOLOv3 model. Environmental Sciences: Processes and Impacts, 2021, 23, 1516-1530.	3.5	9
20	Detection of viability of micro-algae cells by optofluidic hologram pattern. Biomicrofluidics, 2018, 12, 024111.	2.4	8
21	A Changeable Lab-on-a-Chip Detector for Marine Nonindigenous Microorganisms in Ship's Ballast Water. Micromachines, 2018, 9, 20.	2.9	8
22	A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors, 2019, 19, 4940.	3.8	8
23	A novel microfluidic capture and monitoring method for assessing physiological damage of <i>C. elegans</i> under microgravity. Electrophoresis, 2019, 40, 922-929.	2.4	7
24	Remote Aircraft Target Recognition Method Based on Superpixel Segmentation and Image Reconstruction. Mathematical Problems in Engineering, 2020, 2020, 1-9.	1.1	6
25	The automatic and highâ€throughput purification and enrichment of microalgae cells using deterministic lateral displacement arrays with different post shapes. Journal of Chemical Technology and Biotechnology, 2021, 96, 2228-2237.	3.2	6
26	A Novel Handheld High-Throughput Device for Rapid Detection of Phytoplankton in Ship's Ballast Water. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	6
27	A Novel Method Based on Optofluidic Lensless-Holography for Detecting the Composition of Oil Droplets. IEEE Sensors Journal, 2020, 20, 6928-6936.	4.7	4
28	A Novel Hybrid Plasmonic Resonator With High Quality Factor and Large Free Spectral Range. IEEE Sensors Journal, 2021, 21, 1644-1654.	4.7	4
29	Fine-grained classification of fly species in the natural environment based on deep convolutional neural network. Computers in Biology and Medicine, 2021, 135, 104655.	7.0	4
30	Single image dehazing algorithm based on optical diffraction deep neural networks. Optics Express, 2022, 30, 24394.	3.4	4
31	Quantitative viability detection for a single microalgae cell by two-level photoexcitation. Analyst, The, 2020, 145, 3931-3938.	3.5	3
32	Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging. Micromachines, 2021, 12, 896.	2.9	2