Thiruvancheril G Gopakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937234/publications.pdf

Version: 2024-02-01

42 papers

1,142 citations

394421 19 h-index 33 g-index

45 all docs

45 docs citations

45 times ranked

1603 citing authors

#	Article	IF	CITATIONS
1	Solvent†and Temperatureâ€Dependent Assembly in Monolayer Films of a Ferroceneâ€Naphthyridine Hybrid on HOPG. Chemistry - an Asian Journal, 2021, 16, 1430-1437.	3.3	1
2	A cross-linked polymer inclusion membrane for enhanced gold recovery from electronic waste. Waste Management, 2021, 124, 54-62.	7.4	9
3	Light-Induced Quantitative and Electrical-Field-Induced Barrierless Switching of Spiropyran Derivative on Graphite Surface. Journal of Physical Chemistry Letters, 2021, 12, 5463-5468.	4.6	6
4	Measuring the Intermolecular Interactions in Molecular Patterns on Surfaces Using Microscopy. Journal of Physical Chemistry C, 2021, 125, 602-609.	3.1	3
5	Crystal structure and self-assembly on graphite of a pyrazolo[1,5- <i>c</i>) pyrimidine derivative. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 757-763.	0.5	0
6	Revealing the Limits of Intermolecular Interactions: Molecular Rings of Ferrocene Derivatives on Graphite Surface. Journal of Physical Chemistry Letters, 2020, 11, 297-302.	4.6	3
7	Rationally Designed Semiconducting 2D Surface-Confined Metal–Organic Network. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51122-51132.	8.0	3
8	A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications. Physical Chemistry Chemical Physics, 2020, 22, 21360-21368.	2.8	11
9	Solution-Processed Large-Area Ultrathin Films of Metal-Coordinated Electron-Rich Adenine-Based Ligand. Journal of Physical Chemistry C, 2019, 123, 20922-20927.	3.1	2
10	Understanding the Adsorption Energetics of Growth Polymorphs of Ferrocene Derivatives: Microscopic Thermal Desorption Analysis. Journal of Physical Chemistry C, 2019, 123, 18488-18494.	3.1	6
11	Effect of cross-linking on the performance of polymer inclusion membranes (PIMs) for the extraction, transport and separation of Zn(II). Journal of Membrane Science, 2019, 589, 117256.	8.2	29
12	Electronic Structure of a Semiconducting Imineâ€Covalent Organic Framework. Chemistry - an Asian Journal, 2019, 14, 4645-4650.	3.3	8
13	Comparing interactions in three-fold symmetric molecules at solid–air interface. Surface Science, 2019, 680, 11-17.	1.9	8
14	Low-Threshold Reversible Electron-Induced and Selective Photoinduced Switching of Azobenzene Derivatives under Ambient Conditions. Journal of Physical Chemistry Letters, 2018, 9, 6326-6333.	4.6	9
15	Selection of Adlayer Patterns of 1,3-Dithia Derivatives of Ferrocene by the Nature of the Solvent. Journal of Physical Chemistry C, 2018, 122, 19067-19074.	3.1	6
16	Controlling Self-Assembly of Switchable Azobenzene Derivatives on Highly Oriented Pyrolytic Graphite at Ambient Conditions. Journal of Physical Chemistry C, 2018, 122, 15330-15337.	3.1	8
17	Coordination-Controlled One-Dimensional Molecular Chains in Hexapodal Adenine–Silver Ultrathin Films. Inorganic Chemistry, 2017, 56, 3976-3982.	4.0	9
18	Ester formation at the liquid–solid interface. Beilstein Journal of Nanotechnology, 2017, 8, 2139-2150.	2.8	6

2

#	Article	IF	CITATIONS
19	Surface <i>cis</i> Effect: Influence of an Axial Ligand on Molecular Self-Assembly. Journal of the American Chemical Society, 2016, 138, 7544-7550.	13.7	10
20	Switching of an Azobenzene-Tripod Molecule on Ag(111). Journal of Physical Chemistry Letters, 2016, 7, 2080-2084.	4.6	31
21	Controlling Growth to One Dimension in Nanoislands of Ferrocene-Sugar Derivatives. Journal of Physical Chemistry C, 2016, 120, 9223-9228.	3.1	10
22	Remotely Triggered Geometrical Isomerization of a Binuclear Complex. Journal of the American Chemical Society, 2014, 136, 6163-6166.	13.7	3
23	Broken Symmetry of an Adsorbed Molecular Switch Determined by Scanning Tunneling Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 11007-11010.	13.8	12
24	Polymorphs of trimesic acid controlled by solvent polarity and concentration of solute at solida \in "liquid interface. Surface Science, 2013, 607, 68-73.	1.9	27
25	Berichtigung: Elektroneninduzierter Spin-Crossover von Einzelmolek $ ilde{A}$ len in einer Doppellage auf Gold. Angewandte Chemie, 2013, 125, 3884-3884.	2.0	2
26	Surface Control of Alkyl Chain Conformations and 2D Chiral Amplification. Journal of the American Chemical Society, 2013, 135, 8814-8817.	13.7	41
27	Spinâ€Crossover Complex on Au(111): Structural and Electronic Differences Between Mono―and Multilayers. Chemistry - A European Journal, 2013, 19, 15702-15709.	3.3	91
28	Electronic Ground-State and Orbital Ordering of Iron Phthalocyanine on H/Si(111) Unraveled by Spatially Resolved Tunneling Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 20882-20886.	3.1	24
29	Transfer of Cl Ligands between Adsorbed Iron Tetraphenylporphyrin Molecules. Journal of the American Chemical Society, 2012, 134, 11844-11847.	13.7	60
30	Electronâ€Induced Spin Crossover of Single Molecules in a Bilayer on Gold. Angewandte Chemie - International Edition, 2012, 51, 6262-6266.	13.8	246
31	Coverage-Driven Electronic Decoupling of Fe-Phthalocyanine from a Ag(111) Substrate. Journal of Physical Chemistry C, 2011, 115, 12173-12179.	3.1	64
32	Polymorphism Driven by Concentration at the Solid–Liquid Interface. Journal of Physical Chemistry C, 2011, 115, 21743-21749.	3.1	68
33	Exploring the F ₁₆ CoPc/Ag(110) Interface Using Scanning Tunneling Microscopy and Spectroscopy. Part 1: Template-Guided Adlayer Structure Formation. Journal of Physical Chemistry C, 2010, 114, 3537-3543.	3.1	25
34	Exploring the F ₁₆ CoPc/Ag(110) Interface Using Scanning Tunneling Microscopy and Spectroscopy. 2. Adsorption-Induced Charge Transfer Effect. Journal of Physical Chemistry C, 2010, 114, 21548-21554.	3.1	36
35	Influence of Solvophobic Effects on Self-Assembly of Trimesic Acid at the Liquidâ^'Solid Interface. Journal of Physical Chemistry C, 2010, 114, 3531-3536.	3.1	52
36	Coverage Driven Formation of Homochiral Domains of an Achiral Molecule on Au(111). Journal of Physical Chemistry C, 2010, 114, 18247-18251.	3.1	25

#	Article	lF	CITATION
37	HOMOâ^LUMO Gap Shrinking Reveals Tip-Induced Polarization of Molecules in Ultrathin Layers: Tipâ^Sample Distance-Dependent Scanning Tunneling Spectroscopy on d ⁸ (Ni, Pd, and Pt) Phthalocyanines. Journal of Physical Chemistry C, 2008, 112, 2529-2537.	3.1	29
38	Porous Network Structure of Octacyano-Metal-Free Phthalocyanine on the Basal Plane of Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2008, 112, 7698-7705.	3.1	9
39	Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy Studies of Planar and Nonplanar Naphthalocyanines on Graphite (0001). Part 1:A Effect of Nonplanarity on the Adlayer Structure and Voltage-induced Flipping of Nonplanar Tinâ°'Naphthalocyanine. Journal of Physical Chemistry B. 2006, 110, 6051-6059.	2.6	48
40	Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy Studies of Planar and Nonplanar Naphthalocyanine on Graphite (0001). Part 2:Â Tipâr'Sample Distance-Dependentlâr'VSpectroscopy. Journal of Physical Chemistry B, 2006, 110, 6060-6065.	2.6	19
41	Scanning Tunnelling Microscopy on Ultrathin Organic Layers of Phthalocyanine and Naphthalocyanines on Highly Oriented Pyrolytic Graphite (0001). Japanese Journal of Applied Physics, 2006, 45, 2268-2270.	1.5	19
42	Effect of Chain Length and the Nature of the Monolayer on the Electrical Behavior of Hydrophobically Organized Gold Clusters. Journal of Physical Chemistry B, 2003, 107, 13567-13574.	2.6	27