M M Bhatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3937218/publications.pdf Version: 2024-02-01

ΜΜΒμλττι

#	Article	IF	CITATIONS
1	Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 2017, 111, 1039-1049.	4.8	295
2	Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 2016, 221, 567-573.	4.9	282
3	Active method for nanofluid heat transfer enhancement by means of EHD. International Journal of Heat and Mass Transfer, 2017, 109, 115-122.	4.8	273
4	Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvascular Research, 2017, 110, 32-42.	2.5	191
5	Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface. Entropy, 2016, 18, 123.	2.2	173
6	Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. Journal of Molecular Liquids, 2017, 230, 237-246.	4.9	160
7	Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. Journal of Molecular Liquids, 2019, 291, 111231.	4.9	154
8	Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. International Journal of Heat and Mass Transfer, 2014, 71, 706-719.	4.8	144
9	Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Modern Physics Letters B, 2019, 33, 1950439.	1.9	136
10	Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage, 2022, 45, 103511.	8.1	136
11	Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Advanced Powder Technology, 2018, 29, 1189-1197.	4.1	131
12	Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au Cu nanoparticles) with moderate Reynolds number: An expanding horizon. International Communications in Heat and Mass Transfer, 2021, 123, 105228.	5.6	131
13	Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles. Computers in Biology and Medicine, 2016, 78, 29-41.	7.0	129
14	Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries. Frontiers in Physics, 2020, 8, .	2.1	125
15	EFFECTS OF MAGNETOHYDRODYNAMICS ON PERISTALTIC FLOW OF JEFFREY FLUID IN A RECTANGULAR DUCT THROUGH A POROUS MEDIUM. Journal of Porous Media, 2014, 17, 143-157.	1.9	122
16	Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1802-1820.	2.8	120
17	Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno's nanofluid model. Physica Scripta, 2019, 94, 115304.	2.5	120
18	Entropy Generation on MHD Eyring–Powell Nanofluid through a Permeable Stretching Surface. Entropy, 2016, 18, 224.	2.2	115

#	Article	IF	CITATIONS
19	The study of non-Newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Advances, 2018, 8, 7904-7915.	3.6	115
20	A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Computing and Applications, 2018, 30, 1237-1249.	5.6	114
21	Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. Journal of Molecular Liquids, 2016, 222, 101-108.	4.9	111
22	Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese Journal of Physics, 2019, 58, 222-234.	3.9	111
23	Study of Activation Energy on the Movement of Gyrotactic Microorganism in a Magnetized Nanofluids Past a Porous Plate. Processes, 2020, 8, 328.	2.8	110
24	Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles. Entropy, 2020, 22, 1070.	2.2	108
25	Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects. Waves in Random and Complex Media, 0, , 1-26.	2.7	105
26	Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2029-2038.	3.6	104
27	Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. European Physical Journal: Special Topics, 2022, 231, 521-533.	2.6	104
28	STUDY OF HEAT AND MASS TRANSFER IN THE EYRING–POWELL MODEL OF FLUID PROPAGATING PERISTALTICALLY THROUGH A RECTANGULAR COMPLIANT CHANNEL. Heat Transfer Research, 2019, 50, 1539-1560.	1.6	103
29	Bioconvection in the Rheology of Magnetized Couple Stress Nanofluid Featuring Activation Energy and Wu's Slip. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 81-95.	4.2	99
30	Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Applied Mathematics and Mechanics (English Edition), 2020, 41, 637-654.	3.6	91
31	Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. Journal of Molecular Liquids, 2018, 250, 80-87.	4.9	89
32	On the Partition of Energies for the Backward in Time Problem of Thermoelastic Materials with a Dipolar Structure. Symmetry, 2019, 11, 863.	2.2	88
33	Computational Framework of Magnetized MgO–Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings. Nanomaterials, 2022, 12, 1049.	4.1	88
34	Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. European Physical Journal Plus, 2016, 131, 1.	2.6	83
35	A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Applied Mathematics and Computation, 2018, 316, 381-389.	2.2	83
36	Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves. Entropy, 2016, 18, 117.	2.2	82

#	Article	IF	CITATIONS
37	Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface. Mathematics, 2020, 8, 380.	2.2	82
38	Editorial: Recent Trends in Computational Fluid Dynamics. Frontiers in Physics, 2020, 8, .	2.1	80
39	On the decay of exponential type for the solutions in a dipolar elastic body. Journal of Taibah University for Science, 2020, 14, 534-540.	2.5	80
40	Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model. Computer Methods and Programs in Biomedicine, 2016, 137, 115-124.	4.7	79
41	Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave. Journal of Molecular Liquids, 2016, 218, 240-245.	4.9	78
42	Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1293-1306.	3.6	76
43	The impact of impinging TiO ₂ nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures, 2018, 14, 530-548.	1.3	74
44	Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Applied Mathematics and Mechanics (English Edition), 2020, 41, 711-724.	3.6	73
45	Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. Journal of Molecular Liquids, 2018, 258, 186-195.	4.9	71
46	Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field. Journal of Molecular Liquids, 2017, 241, 1059-1068.	4.9	70
47	Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel. Entropy, 2017, 19, 481.	2.2	70
48	Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls. AEJ - Alexandria Engineering Journal, 2016, 55, 653-662.	6.4	69
49	Analysis of Entropy Generation in the Flow of Peristaltic Nanofluids in Channels With Compliant Walls. Entropy, 2016, 18, 90.	2.2	68
50	Numerical study on the hybrid nanofluid (Co3O4-Go/H2O) flow over a circular elastic surface with non-Darcy medium: Application in solar energy. Journal of Molecular Liquids, 2022, 361, 119655.	4.9	68
51	Effects of Double Diffusion Convection on Third Grade Nanofluid through a Curved Compliant Peristaltic Channel. Coatings, 2020, 10, 154.	2.6	67
52	Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet. Journal of Magnetics, 2016, 21, 468-475.	0.4	67
53	Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet. Indian Journal of Physics, 2017, 91, 1219-1227.	1.8	65
54	Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Physica A: Statistical Mechanics and Its Applications, 2020, 545, 123788.	2.6	65

#	Article	IF	CITATIONS
55	Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate. Entropy, 2016, 18, 223.	2.2	64
56	Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. AEJ - Alexandria Engineering Journal, 2016, 55, 1017-1023.	6.4	63
57	Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2187-2202.	3.6	63
58	APPLICATION OF DRUG DELIVERY IN MAGNETOHYDRODYNAMICS PERISTALTIC BLOOD FLOW OF NANOFLUID IN A NON-UNIFORM CHANNEL. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650052.	0.7	62
59	Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Engineering Science and Technology, an International Journal, 2017, 20, 1129-1139.	3.2	62
60	Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2259-2267.	3.6	61
61	Entropy analysis of thermally radiating MHD slip flow of hybrid nanoparticles (Au-Al2O3/Blood) through a tapered multi-stenosed artery. Chemical Physics Letters, 2022, 790, 139348.	2.6	61
62	Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122136.	2.6	60
63	Natural Convection Non-Newtonian EMHD Dissipative Flow Through a Microchannel Containing a Non-Darcy Porous Medium: Homotopy Perturbation Method Study. Qualitative Theory of Dynamical Systems, 2022, 21, .	1.7	60
64	Metachronal propulsion of a magnetised particle-fluid suspension in a ciliated channel with heat and mass transfer. Physica Scripta, 2019, 94, 115301.	2.5	59
65	A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Canadian Journal of Physics, 2019, 97, 277-285.	1.1	58
66	Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Modern Physics Letters B, 2020, 34, 2050026.	1.9	58
67	Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2585-2596.	3.6	58
68	Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 368-376.	4.7	55
69	Combine effects of Magnetohydrodynamics (MHD) and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties. Engineering Science and Technology, an International Journal, 2016, 19, 1497-1502.	3.2	54
70	Peristaltic Flow of Couple Stress Fluid in a Non-Uniform Rectangular Duct Having Compliant Walls. Communications in Theoretical Physics, 2016, 65, 66-72.	2.5	54
71	Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids. Indian Journal of Physics, 2018, 92, 423-430.	1.8	54
72	Analysis of Arrhenius Kinetics on Multiphase Flow between a Pair of Rotating Circular Plates. Mathematical Problems in Engineering, 2020, 2020, 1-17.	1.1	54

#	Article	IF	CITATIONS
73	Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: A robust spectral approach. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 98-105.	5.3	54
74	New Insight into AuNP Applications in Tumour Treatment and Cosmetics through Wavy Annuli at the Nanoscale. Scientific Reports, 2019, 9, 260.	3.3	53
75	Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM. Journal of Computational Design and Engineering, 2017, 4, 21-28.	3.1	52
76	Sinusoidal motion of small particles through a Darcy-Brinkman-Forchheimer microchannel filled with non-Newtonian fluid under electro-osmotic forces. Journal of Taibah University for Science, 2021, 15, 514-529.	2.5	50
77	Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effect. Propulsion and Power Research, 2017, 6, 177-185.	4.3	47
78	Mathematical Analysis on an Asymmetrical Wavy Motion of Blood under the Influence Entropy Generation with Convective Boundary Conditions. Symmetry, 2020, 12, 102.	2.2	47
79	Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Applied Mathematics and Computation, 2022, 421, 126927.	2.2	47
80	Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field. Mathematics, 2022, 10, 2007.	2.2	47
81	Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model. Neural Computing and Applications, 2018, 30, 3467-3478.	5.6	46
82	Analytical Study of the Head-On Collision Process between Hydroelastic Solitary Waves in the Presence of a Uniform Current. Symmetry, 2019, 11, 333.	2.2	46
83	Thermodynamic entropy of a magnetized Reeâ€Eyring particleâ€fluid motion with irreversibility process: A mathematical paradigm. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000186.	1.6	46
84	HEAT TRANSFER IN MAGNETITE (Fe3O4) NANOPARTICLES SUSPENDED IN CONVENTIONAL FLUIDS: REFRIGERANT-134A (C2H2F4), KEROSENE (C10H22), AND WATER (H2O) UNDER THE IMPACT OF DIPOLE. Heat Transfer Research, 2020, 51, 217-232.	1.6	45
85	Effects of thermal radiation and electromagnetohydrodynamics on viscous nanofluid through a Riga plate. Multidiscipline Modeling in Materials and Structures, 2016, 12, 605-618.	1.3	44
86	Study of Heat Transfer with Nonlinear Thermal Radiation on Sinusoidal Motion of Magnetic Solid Particles in a Dusty Fluid. Journal of Theoretical and Applied Mechanics (Bulgaria), 2016, 46, 75-94.	0.0	44
87	Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2623-2639.	2.8	44
88	Analytic study of heat transfer with variable viscosity on solid particle motion in dusty Jeffery fluid. Modern Physics Letters B, 2016, 30, 1650196.	1.9	43
89	Numerical Simulation of Entropy Generation on MHD Nanofluid Towards a Stagnation Point Flow Over a Stretching Surface. International Journal of Applied and Computational Mathematics, 2017, 3, 2275-2289.	1.6	42
90	Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method. Microgravity Science and Technology, 2018, 30, 445-455.	1.4	42

#	Article	IF	CITATIONS
91	Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis. Journal of Molecular Liquids, 2020, 314, 113568.	4.9	42
92	Biologically Inspired Intra-Uterine Nanofluid Flow under the Suspension of Magnetized Gold (Au) Nanoparticles: Applications in Nanomedicine. Inventions, 2021, 6, 28.	2.5	42
93	Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel. Indian Journal of Physics, 2018, 92, 1229-1238.	1.8	41
94	Heat transfer effects on electro-magnetohydrodynamic Carreau fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium. Archive of Applied Mechanics, 2021, 91, 1683-1695.	2.2	41
95	Influence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotating cylinder. Chinese Journal of Physics, 2020, 68, 558-577.	3.9	40
96	Bioconvection analysis for flow of Oldroyd-B nanofluid configured by a convectively heated surface with partial slip effects. Surfaces and Interfaces, 2021, 23, 100982.	3.0	40
97	Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: Application in solar energy. Sustainable Energy Technologies and Assessments, 2022, 52, 102029.	2.7	40
98	Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana - Journal of Physics, 2019, 93, 1.	1.8	38
99	Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 609-630.	2.8	37
100	Entropy Generation with Nonlinear Thermal Radiation in MHD Boundary Layer Flow Over a Permeable Shrinking/Stretching Sheet: Numerical Solution. Journal of Nanofluids, 2016, 5, 543-548.	2.7	37
101	Analysis on the heat storage unit through a Y-shaped fin for solidification of NEPCM. Journal of Molecular Liquids, 2019, 292, 111378.	4.9	36
102	Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave. Pramana - Journal of Physics, 2017, 89, 1.	1.8	35
103	Analysis of natural convective flow of non-Newtonian fluid under the effects of nanoparticles of different materials. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233, 643-652.	2.5	35
104	Duan–Rach Approach to Study Al2O3-Ethylene Glycol C2H6O2 Nanofluid Flow Based upon KKL Model. Inventions, 2020, 5, 45.	2.5	35
105	Insight into the Dynamics of Oldroyd-B Fluid Over an Upper Horizontal Surface of a Paraboloid of Revolution Subject to Chemical Reaction Dependent on the First-Order Activation Energy. Arabian Journal for Science and Engineering, 2021, 46, 6039-6048.	3.0	35
106	Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism. Neural Computing and Applications, 2019, 31, 1905-1913.	5.6	34
107	Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon. Journal of Dispersion Science and Technology, 2023, 44, 225-235.	2.4	34
108	HEAT AND MASS TRANSFER ANALYSIS ON PERISTALTIC FLOW OF PARTICLE–FLUID SUSPENSION WITH SLIP EFFECTS. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750028.	0.7	33

#	Article	IF	CITATIONS
109	Mathematical study of peristaltic propulsion of solid–liquid multiphase flow with a biorheological fluid as the base fluid in a duct. Chinese Journal of Physics, 2017, 55, 1596-1604.	3.9	33
110	Hydrodynamics Interactions of Metachronal Waves on Particulate-Liquid Motion through a Ciliated Annulus: Application of Bio-Engineering in Blood Clotting and Endoscopy. Symmetry, 2020, 12, 532.	2.2	33
111	Numerical simulation of Fluid flow over a shrinking porous sheet by Successive linearization method. AEJ - Alexandria Engineering Journal, 2016, 55, 51-56.	6.4	32
112	Differential transform solution for Hall and ionâ€slip effects on radiativeâ€convective Casson flow from a stretching sheet with convective heating. Heat Transfer, 2020, 49, 872-888.	3.0	32
113	Bioconvection Reiner-Rivlin Nanofluid Flow between Rotating Circular Plates with Induced Magnetic Effects, Activation Energy and Squeezing Phenomena. Mathematics, 2021, 9, 2139.	2.2	32
114	Peristaltic propulsion of particulate non-Newtonian Ree-Eyring fluid in a duct through constant magnetic field. AEJ - Alexandria Engineering Journal, 2018, 57, 1055-1060.	6.4	30
115	Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave. Thermal Science, 2018, 22, 2439-2448.	1.1	30
116	A New Numerical Simulation of MHD Stagnation-Point Flow Over a Permeable Stretching/Shrinking Sheet in Porous Media with Heat Transfer. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 779-785.	1.5	29
117	Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge. Applied Nanoscience (Switzerland), 2018, 8, 53-60.	3.1	29
118	Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model. Applied Mathematics and Computation, 2022, 421, 126936.	2.2	29
119	Electromagnetohydrodynamic (EMHD) peristaltic flow of solid particles in a third-grade fluid with heat transfer. Mechanics and Industry, 2017, 18, 314.	1.3	28
120	Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232, 519-527.	2.5	28
121	Thermally developed coupled stress particle–fluid motion with mass transfer and peristalsis. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2515-2524.	3.6	28
122	Non-uniform pumping flow model for the couple stress particle-fluid under magnetic effects. Chemical Engineering Communications, 2022, 209, 1058-1069.	2.6	28
123	Study of variable magnetic field and endoscope on peristaltic blood flow of particle-fluid suspension through an annulus. Biomedical Engineering Letters, 2016, 6, 242-249.	4.1	27
124	Simultaneous effects of chemical reaction and Ohmic heating with heat and mass transfer over a stretching surface: A numerical study. Chinese Journal of Chemical Engineering, 2017, 25, 1137-1142.	3.5	27
125	Bioconvection oblique motion of magnetized Oldroyd-B fluid through an elastic surface with suction/injection. Chinese Journal of Physics, 2021, 73, 314-330.	3.9	27
126	Mixed Convective-Radiative Dissipative Magnetized Micropolar Nanofluid Flow over a Stretching Surface in Porous Media with Double Stratification and Chemical Reaction Effects: ADM-Padé Computation. Journal of Mathematics, 2022, 2022, 1-19.	1.0	27

#	Article	IF	CITATIONS
127	Study of heat and mass transfer on MHD Walters < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> < mml:mrow> < mml:mrow> < mml:mi> B < / mml:mi> < / mml:mrow> < mml:mrow> < mrl flow induced by a stretching porous surface. AFL - Alexandria Engineering Journal. 2018. 57, 2435-2443.	nl:mo>â€2	<del 25ml:mo><
128	Effects of Cu–Ag hybrid nanoparticles on the momentum and thermal boundary layer flow over the wedge. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233, 1128-1136.	2.5	25
129	Radiative bioconvection nanofluid squeezing flow between rotating circular plates: Semi-numerical study with the DTM-Padé approach. Modern Physics Letters B, 2022, 36, .	1.9	25
130	Heat transfer and inclined magnetic field analysis on peristaltically induced motion of small particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3259-3267.	1.6	24
131	Flow analysis of particulate suspension on an asymmetric peristaltic motion in a curved configuration with heat and mass transfer. Mechanics and Industry, 2018, 19, 401.	1.3	23
132	Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 740-760.	2.8	23
133	Biologically inspired transport of solid spherical nanoparticles in an electrically-conducting viscoelastic fluid with heat transfer. Thermal Science, 2020, 24, 1251-1260.	1.1	23
134	Entropy Generation with nonlinear heat and Mass transfer on MHD Boundary Layer over a Moving Surface using SLM. Nonlinear Engineering, 2017, 6, .	2.7	22
135	Cilia-assisted flow of viscoelastic fluid in a divergent channel under porosity effects. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1399-1412.	2.8	22
136	Oxytactic Microorganisms and Thermo-Bioconvection Nanofluid Flow Over a Porous Riga Plate with Darcy–Brinkman–Forchheimer Medium. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 257-268.	4.2	22
137	Head-on Collision Between Two Hydroelastic Solitary Waves in Shallow Water. Qualitative Theory of Dynamical Systems, 2018, 17, 103-122.	1.7	21
138	PHAN-THIEN-TANNER NANOFLUID FLOW WITH GOLD NANOPARTICLES THROUGH A STENOTIC ELECTROKINETIC AORTA: A STUDY ON THE CANCER TREATMENT. Heat Transfer Research, 2021, 52, 87-99.	1.6	21
139	A revised viscoelastic micropolar nanofluid model with motile microâ€organisms and variable thermal conductivity. Heat Transfer, 2020, 49, 3726-3741.	3.0	20
140	Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization. Thermal Science and Engineering Progress, 2021, 24, 100930.	2.7	19
141	Numerical Modelling for Nanoparticle Thermal Migration with Effects of Shape of Particles and Magnetic Field Inside a Porous Enclosure. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2021, 45, 801-811.	1.3	18
142	Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcyporous medium. International Journal of Modern Physics B, 2021, 35, .	2.0	18
143	Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. Journal of Thermal Analysis and Calorimetry, 2021, 144, 973-981.	3.6	17
144	Bioconvection aspects in non-Newtonian three-dimensional Carreau nanofluid flow with Cattaneo–Christov model and activation energy. European Physical Journal: Special Topics, 2021, 230, 1317-1330.	2.6	17

#	Article	IF	CITATIONS
145	Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: dual solutions and stability analysis. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	17
146	Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 123999.	2.6	16
147	Bioconvection mechanism using third-grade nanofluid flow with Cattaneo–Christov heat flux model and Arrhenius kinetics. International Journal of Modern Physics B, 2021, 35, 2150178.	2.0	16
148	Free Convective Flow of Hamilton-Crosser Model Gold-water Nanofluid Through a Channel with Permeable Moving Walls. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 1103-1114.	1.1	16
149	Peristaltic Propulsion of Jeffrey Nanofluid with Thermal Radiation and Chemical Reaction Effects. Inventions, 2019, 4, 68.	2.5	15
150	Some results in Mooreâ€Gibsonâ€Thompson thermoelasticity of dipolar bodies. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2020, 100, e202000090.	1.6	15
151	Maxwell time-dependent nanofluid flow over a wedge covered with gyrotactic microorganism: an activation energy process. International Journal of Ambient Energy, 2022, 43, 5560-5570.	2.5	15
152	Entropy Analysis on a Three-Dimensional Wavy Flow of Eyring–Powell Nanofluid: A Comparative Study. Mathematical Problems in Engineering, 2021, 2021, 1-14.	1.1	14
153	Double-diffusion convective biomimetic flow of nanofluid in a complex divergent porous wavy medium under magnetic effects. Journal of Biological Physics, 2021, 47, 477-498.	1.5	14
154	Analytic Study of Drug Delivery in Peristaltically Induced Motion of Non-Newtonian Nanofluid. Journal of Nanofluids, 2016, 5, 920-927.	2.7	14
155	INFLUENCE OF EXTERNAL MAGNETIC SOURCE ON NANOFLUID TREATMENT IN A POROUS CAVITY. Journal of Porous Media, 2019, 22, 1475-1491.	1.9	14
156	Rheological Modeling of Metallic Oxide Nanoparticles Containing Non-Newtonian Nanofluids and Potential Investigation of Heat and Mass Flow Characteristics. Nanomaterials, 2022, 12, 1237.	4.1	14
157	Numerical computation of magnetized bioconvection nanofluid flow with temperature-dependent viscosity and Arrhenius kinetic. Mathematics and Computers in Simulation, 2022, 200, 377-392.	4.4	14
158	Swimming of micro-organism over an oscillatory stretched surface filled with a magnetic third-grade nanofluid: An application of activation energy. Chinese Journal of Physics, 2020, 65, 64-74.	3.9	13
159	Magnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000349.	1.6	13
160	Entropy Generation in Magnetized Blood Flow Through a Finite Wavy Channel Under Slip Conditions. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 419-429.	4.2	13
161	Interaction between blood and solid particles propagating through a capillary with slip effects. Microvascular Research, 2018, 119, 38-46.	2.5	11
162	Mixed Convection Flow over an Elastic, Porous Surface with Viscous Dissipation: A Robust Spectral Computational Approach. Fractal and Fractional, 2022, 6, 263.	3.3	11

#	Article	IF	CITATIONS
163	Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave. Communications in Theoretical Physics, 2017, 68, 103.	2.5	10
164	Influence of magnetohydrodynamics on metachronal wave of particle-fluid suspension due to cilia motion. Engineering Science and Technology, an International Journal, 2017, 20, 265-271.	3.2	10
165	Mass Transport with Asymmetric Peristaltic Propulsion Coated with Synovial Fluid. Coatings, 2018, 8, 407.	2.6	10
166	An application of Nwogu's Boussinesq model to analyze the head-on collision process between hydroelastic solitary waves. Open Physics, 2019, 17, 177-191.	1.7	10
167	Peristaltic Blood Flow of Ellis Fluid Through a Nonuniform Channel Having Compliant Walls. Journal of Nanofluids, 2017, 6, 318-323.	2.7	10
168	Heat transfer of nano powder inside a porous tank with use of non-equilibrium approach. International Communications in Heat and Mass Transfer, 2020, 116, 104710.	5.6	9
169	Simulation of convective MHD flow with inclusion of hybrid powders. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1013-1022.	3.6	9
170	ENTROPY ANALYSIS ON TITANIUM MAGNETO-NANOPARTICLES SUSPENDED IN WATER-BASED NANOFLUID: A NUMERICAL STUDY. Computational Thermal Sciences, 2016, 8, 457-468.	0.9	9
171	Analysis of Metallic Nanoparticles (Cu, Al2O3, and SWCNTs) on Magnetohydrodynamics Water-Based Nanofluid through a Porous Medium. Journal of Mathematics, 2022, 2022, 1-12.	1.0	9
172	Swimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface. Journal of Central South University, 2021, 28, 3279-3296.	3.0	9
173	Transient Magneto-Squeezing Flow of NaCl-CNP Nanofluid over a Sensor Surface Inspired by Temperature Dependent Viscosity. Defect and Diffusion Forum, 0, 387, 600-614.	0.4	8
174	BUOYANCY-DRIVEN CHEMICALIZED EMHD NANOFLUID FLOW THROUGH A STRETCHING PLATE WITH DARCY–BRINKMAN–FORCHHEIMER POROUS MEDIUM. Heat Transfer Research, 2019, 50, 1105-1126.	1.6	8
175	A semigroup of contractions in elasticity of porous bodies. Continuum Mechanics and Thermodynamics, 2021, 33, 2027-2037.	2.2	8
176	Head-on collision between capillary–gravity solitary waves. Boundary Value Problems, 2020, 2020, .	0.7	8
177	COMPUTATIONAL STUDY OF MAGNETIZED BLOOD FLOW IN THE PRESENCE OF GYROTACTIC MICROORGANISMS PROPELLED THROUGH A PERMEABLE CAPILLARY IN A STRETCHING MOTION. International Journal for Multiscale Computational Engineering, 2018, 16, 409-426.	1.2	8
178	ENTROPY GENERATION IN BLOOD FLOW WITH HEAT AND MASS TRANSFER FOR THE ELLIS FLUID MODEL. Heat Transfer Research, 2018, 49, 747-760.	1.6	7
179	The role of radiation and bioconvection as an external agent to control the temperature and motion of fluid over the radially spinning circular surface: A theoretical analysis via Chebyshev spectral approach. Mathematical Methods in the Applied Sciences, 0, , .	2.3	7
180	Numerical study of natural convection dissipative electroâ€magnetic nonâ€Newtonian flow through a nonâ€Darcy channel. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	7

#	Article	IF	CITATIONS
181	Numerical experiment of Reiner–Philippoff nanofluid flow subject to the higher-order slip features, activation energy, and bioconvection. Partial Differential Equations in Applied Mathematics, 2021, 4, 100126.	2.4	6
182	Head-on collision between two hydroelastic solitary waves with Plotnikov-Toland's plate model. Theoretical and Applied Mechanics Letters, 2018, 8, 384-392.	2.8	5
183	Hydroelastic solitary wave during the head-on collision process in a stratified fluid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 6135-6148.	2.1	5
184	Heat transfer on magnetohydrodynamic stagnation point flow through a porous shrinking/stretching sheet: A numerical study. Thermal Science, 2020, 24, 1335-1344.	1.1	5
185	Darcy–Brinkman–Forchheimer Model for Nano-Bioconvection Stratified MHD Flow through an Elastic Surface: A Successive Relaxation Approach. Mathematics, 2021, 9, 2514.	2.2	5
186	Dissipative effects on a chemically and thermally radiative heat fluid flow past a shrinking porous sheet. International Journal of Applied Electromagnetics and Mechanics, 2021, 66, 127-140.	0.6	4
187	EFFECT OF LORENTZ FORCES ON NANOFLUID FLOW INSIDE A POROUS ENCLOSURE WITH A MOVING WALL USING VARIOUS SHAPES OF CuO NANOPARTICLES. Heat Transfer Research, 2019, 50, 697-715.	1.6	4
188	Electroâ€magnetoâ€hydrodynamic Eyringâ€Powell fluid flow through microâ€parallel plates with heat transfer and nonâ€Darcian effects. Mathematical Methods in the Applied Sciences, 2023, 46, 11642-11656.	2.3	4
189	NANOFLUID ELECTROHYDRODYNAMIC FORCED CONVECTION AND RADIATION INSIDE A POROUS ENCLOSURE. Computational Thermal Sciences, 2019, 11, 475-487.	0.9	3
190	Recent Trends in Nanofluids. Inventions, 2021, 6, 39.	2.5	2
191	Recent Advances in Multiphase Flows in Engineering. Mathematical Problems in Engineering, 2021, 2021, 1-3.	1.1	0
192	Slip Effects on Fe3O4-Nanoparticles in a Nanofluid Past a Nonlinear Stretching Surface. Advances in Intelligent Systems and Computing, 2021, , 366-378.	0.6	0