Angel Cantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936960/publications.pdf

Version: 2024-02-01

38 2,025 19
papers citations h-index

9 38
ndex g-index

315357

40 40 docs citations

40 times ranked 2062 citing authors

#	Article	IF	Citations
1	The ITQ-37 mesoporous chiral zeolite. Nature, 2009, 458, 1154-1157.	13.7	526
2	Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358, 1068-1071.	6.0	304
3	Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 2010, 330, 1219-1222.	6.0	136
4	Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. Journal of the American Chemical Society, 2006, 128, 4216-4217.	6.6	93
5	Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie - International Edition, 2006, 45, 8013-8015.	7.2	93
6	Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chemical Communications, 2007, , 1233-1235.	2.2	85
7	Synthesis and Structure of Polymorph B of Zeolite Beta. Chemistry of Materials, 2008, 20, 3218-3223.	3.2	80
8	Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 2005, 127, 11560-11561.	6.6	72
9	Synthesis of the Tiâ^'Silicate Form of BEC Polymorph of β-Zeolite Assisted by Molecular Modeling. Journal of Physical Chemistry C, 2008, 112, 19547-19554.	1.5	58
10	A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 2014, 136, 3342-3345.	6.6	58
11	Searching Organic Structure Directing Agents for the Synthesis of Specific Zeolitic Structures:Â An Experimentally Tested Computational Study. Chemistry of Materials, 2005, 17, 545-552.	3.2	55
12	Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2,\langle i>N$ -Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. Journal of Organic Chemistry, 2010, 75, 7769-7780.	1.7	48
13	Novel Layered Organicâ^'lnorganic Hybrid Materials with Bridged Silsesquioxanes as Pillars. Chemistry of Materials, 2007, 19, 3686-3693.	3.2	47
14	The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 2015, 51, 7602-7605.	2.2	47
15	Isolation, Structural Assignment, and Synthesis of N-(2-Methyl-3-oxodecanoyl)-2-pyrroline, a New Natural Product from Penicillium brevicom pactum with in Vivo Anti-Juvenile Hormone Activity. Journal of Organic Chemistry, 1998, 63, 8530-8535.	1.7	37
16	Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 2015, 27, 2981-2989.	3.2	33
17	Insecticidal, Anti-juvenile Hormone, and Fungicidal Activities of Organic Extracts from DifferentPenicilliumSpecies and Their Isolated Active Components. Journal of Agricultural and Food Chemistry, 1999, 47, 2120-2124.	2.4	32
18	Use of different microporous and mesoporous materials as catalyst in the Diels–Alder and retro-Diels–Alder reaction between cyclopentadiene and p-benzoquinoneActivity of Al-, Ti- and Sn-doped silica. Journal of Molecular Catalysis A, 2005, 240, 16-21.	4.8	26

#	Article	IF	Citations
19	Synthesis and structure determination <i>via</i> ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications, 2018, 54, 2122-2125.	2.2	23
20	Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry, 2020, 8, 588712.	1.8	21
21	Conceptual similarities between zeolites and artificial enzymes. Chemical Science, 2019, 10, 8009-8015.	3.7	20
22	Isolation ofN-(2-Methyl-3-oxodecanoyl)pyrrole andN-(2-Methyl-3-oxodec-8-enoyl)pyrrole, Two New Natural Products fromPenicillium brevicompactum, and Synthesis of Analogues with Insecticidal and Fungicidal Activity. Journal of Agricultural and Food Chemistry, 1998, 46, 4748-4753.	2.4	19
23	Synthesis of the Small Pore Silicoaluminophosphate STA-6 by Using Supramolecular Self-Assembled Organic Structure Directing Agents. Chemistry of Materials, 2014, 26, 4346-4353.	3.2	19
24	Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 451-460.	0.4	16
25	Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science and Technology, 2018, 8, 5835-5847.	2.1	12
26	Isolation, structural assignment and insecticidal activity of (\hat{a}°) -(1S,2R,3R,4S)-1,2-epoxy-1-methyl-4-(1-methylethyl)-cyclohex-3-yl acetate, a natural product from Minthostachys tomentosa. Tetrahedron: Asymmetry, 2001, 12, 677-683.	1.8	10
27	ITQâ€69: A Germaniumâ€Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie - International Edition, 2021, 60, 11745-11750.	7.2	8
28	Charge matching between the occluded organic cations and zeolite framework as structure directing effect in zeolite synthesis. Studies in Surface Science and Catalysis, 2008, 174, 249-252.	1.5	7
29	Synthesis and Biological Evaluation of New Analogues of the Active Fungal MetabolitesN-(2-Methyl-3-oxodecanoyl)-2-pyrroline andN-(2-Methyl-3-oxodec-8-enoyl)-2-pyrroline. Journal of Agricultural and Food Chemistry, 1999, 47, 3866-3871.	2.4	6
30	Synthesis and Biological Evaluation of New Analogues of the Active Fungal MetabolitesN-(2-Methyl-3-oxodecanoyl)-2-pyrroline andN-(2-Methyl-3-oxodec-8-enoyl)-2-pyrroline (II). Journal of Agricultural and Food Chemistry, 2000, 48, 3682-3688.	2.4	6
31	Novel Inhibitors of the Mitochondrial Respiratory Chain:Â Oximes and Pyrrolines Isolated fromPenicillium brevicompactumand Synthetic Analogues. Journal of Agricultural and Food Chemistry, 2005, 53, 8296-8301.	2.4	6
32	Layered hybrid materials with nanotechnological applications: use of disilane precursors as pillaring agents. Studies in Surface Science and Catalysis, 2008, , 337-340.	1.5	5
33	New Insight into the Transcarbamylase Family: The Structure of Putrescine Transcarbamylase, a Key Catalyst for Fermentative Utilization of Agmatine. PLoS ONE, 2012, 7, e31528.	1.1	5
34	Diels–Alder reactions in confined spaces: the influence of catalyst structure and the nature of active sites for the retro-Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 2016, 12, 2181-2188.	1.3	4
35	Synthesis and structure of polymorph B of Beta zeolite. Studies in Surface Science and Catalysis, 2008, 174, 233-236.	1.5	3
36	A new photochemical based route for the preparation of organic structure directing agents useful for zeolite synthesis. Studies in Surface Science and Catalysis, 2007, 170, 330-337.	1.5	2

3

ANGEL CANTIN

#	Article	IF	CITATIONS
37	Elucidation of the Interaction Mechanism between Organic Chiral Cages with Biomolecules through Nuclear Magnetic Resonance and Theoretical Studies. Journal of Physical Chemistry C, 2018, 122, 16821-16829.	1.5	2
38	ITQâ€69: A Germaniumâ€Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie, 2021, 133, 11851-11856.	1.6	1