
Andrés Lira-Noriega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating Earth–life systems: a geogenomic approach. Trends in Ecology and Evolution, 2022, 37, 371-384.	4.2	15
2	Functional divergence from ecological baselines on Caribbean coral reefs. Ecography, 2022, 2022, .	2.1	4
3	Using Simulated Pest Models and Biological Clustering Validation to Improve Zoning Methods in Site-Specific Pest Management. Applied Sciences (Switzerland), 2022, 12, 1900.	1.3	2
4	Two new species of Lamourouxia section Hemispadon (Orobanchaceae) from western Mexico. Phytotaxa, 2022, 549, 51-66.	0.1	0
5	Current and future geographic patterns of bird diversity dimensions of the Yucatan Peninsula and their representativeness in natural protected areas. Neotropical Biodiversity, 2022, 8, 242-252.	0.2	4
6	Effect of landscape composition and configuration on biodiversity at multiple scales: a case study with amphibians from Sierra Madre del Sur, Oaxaca, Mexico. Landscape Ecology, 2022, 37, 1973-1986.	1.9	2
7	Growth temperature effect on mandibles' ontogeny and sexual dimorphism in the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae). Arthropod Structure and Development, 2021, 61, 101029.	0.8	1
8	Upward shifts in elevational limits of forest and grassland for Mexican volcanoes over three decades. Biotropica, 2021, 53, 798-807.	0.8	7
9	American Mammals Susceptibility to Dengue According to Geographical, Environmental, and Phylogenetic Distances. Frontiers in Veterinary Science, 2021, 8, 604560.	0.9	5
10	Phylogenetic relationships and ecological niche conservatism in killifish (Profundulidae) in Mesoamerica. Journal of Fish Biology, 2021, 99, 396-410.	0.7	9
11	Modeling the impact of temperature on the population abundance of the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae) under laboratory-reared conditions. Journal of Thermal Biology, 2021, 101, 103001.	1.1	0
12	Contributions of green spaces and isolated trees to landscape connectivity in an urban landscape. Urban Forestry and Urban Greening, 2021, 64, 127277.	2.3	15
13	Annual precipitation predicts the phylogenetic signal in bat–fruit interaction networks across the Neotropics. Biology Letters, 2021, 17, 20210478.	1.0	10
14	Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 2020, 415, 108837.	1.2	242
15	Potential distribution patterns of scorpions in northâ€eastern Brazil under scenarios of future climate change. Austral Ecology, 2020, 45, 215-228.	0.7	19
16	Using niche centrality within the scope of the nearly neutral theory of evolution to predict genetic diversity in a tropical conifer speciesâ€pair. Journal of Biogeography, 2020, 47, 2755-2772.	1.4	4
17	<scp>ntbox</scp> : An <scp>r</scp> package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 2020, 11, 1199-1206.	2.2	185
18	Influences of environmental heterogeneity on amphibian composition at breeding sites in a semiarid region of Mexico. Journal of Arid Environments, 2020, 182, 104259.	1.2	5

#	Article	IF	CITATIONS
19	Biogeographical patterns and processes in the genus group Scotussae (Acrididae: Melanoplinae): an integrative approach. Biological Journal of the Linnean Society, 2020, 131, 417-433.	0.7	3
20	Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation. BMC Evolutionary Biology, 2020, 20, 103.	3.2	17
21	Back to the future of a rare plant species of the Chihuahuan desert: tracing distribution patterns across time and genetic diversity as a basis for conservation actions. Biodiversity and Conservation, 2020, 29, 1821-1840.	1.2	6
22	Species richness, range size, and wing development in South American melanopline grasshoppers (Orthoptera, Acrididae). Ecological Entomology, 2020, 45, 840-853.	1.1	3
23	Speciesâ€level drivers of mammalian ectoparasite faunas. Journal of Animal Ecology, 2020, 89, 1754-1765.	1.3	20
24	Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation. Climatic Change, 2020, 161, 535-553.	1.7	8
25	Current and future global potential distribution of the fruit fly <i>Drosophila suzukii</i> (Diptera:) Tj ETQq1 1 0.	784314 rg 0.4	BT ₁₈ Overlock
26	Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 2020, 95, 802-821.	4.7	252
27	Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation, 2020, 18, 19-30.	1.0	22
28	Potential distribution and predator-prey interactions with terrestrial vertebrates of four pet commercialized exotic snakes in Mexico. Acta Oecologica, 2020, 103, 103526.	0.5	3
29	Discordant phylogenetic endemism patterns in a recently diversified Brassicaceae lineage from the Atacama Desert: When choices in phylogenetics and species distribution information matter. Journal of Biogeography, 2020, 47, 1792-1804.	1.4	2
30	Viviparous Reptile Regarded to Have Temperature-Dependent Sex Determination Has Old XY Chromosomes. Genome Biology and Evolution, 2020, 12, 924-930.	1.1	37
31	Ecological Niche Modeling and Other Tools for the Study of Avian Malaria Distribution in the Neotropics: A Short Literature Review. , 2020, , 251-280.		2
32	Coexistencia de Vulpes macrotis y Canis latrans (Carnivora: Canidae) en la Reserva de la Biosfera de MapimÃ , México. Revista Mexicana De Biodiversidad, 2020, 91, .	0.4	0
33	Canopy asymmetry in solitary Diphysa americana trees: wind and landscape on the Mexican coast. Journal of Coastal Conservation, 2019, 23, 163-172.	0.7	4
34	Corytophanids Replaced the Pleurodont XY System with a New Pair of XY Chromosomes. Genome Biology and Evolution, 2019, 11, 2666-2677.	1.1	19
35	Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Computers and Electronics in Agriculture, 2019, 167, 105101.	3.7	29
36	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19

#	Article	IF	CITATIONS
37	Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Global Ecology and Biogeography, 2018, 27, 298-309.	2.7	72
38	Diversification mechanisms in the Andean grasshopper genus Orotettix (Orthoptera: Acrididae): ecological niches and evolutionary history. Biological Journal of the Linnean Society, 2018, 123, 697-711.	0.7	11
39	Potential invasion of exotic ambrosia beetles Xyleborus glabratus and Euwallacea sp. in Mexico: A major threat for native and cultivated forest ecosystems. Scientific Reports, 2018, 8, 10179.	1.6	28
40	IS SPECIES GEOGRAPHIC OVERLAP CONSTANT ACROSS LATITUDE? A HOMAGE TO E. H. RAPOPORT. Oecologia Australis, 2018, 22, 144-155.	0.1	1
41	Combining Phylogenetic and Occurrence Information for Risk Assessment of Pest and Pathogen Interactions with Host Plants. Frontiers in Applied Mathematics and Statistics, 2017, 3, .	0.7	12
42	Ecological niche modeling of the rare bee Promelitta alboclypeata reveals possible cryptic differentiation across northern Africa and Arabia (Hymenoptera: Melittidae). Apidologie, 2016, 47, 509-514.	0.9	5
43	Assessing the Geological and Climatic Forcing of Biodiversity and Evolution Surrounding the Gulf of California. Journal of the Southwest, 2015, 57, 391-455.	0.1	66
44	Human Dimensions of Research in the Sonoran Desert: Next Generation Sonoran Desert Researchers. Journal of the Southwest, 2015, 57, 187-198.	0.1	0
45	The roles of history and ecology in chloroplast phylogeographic patterns of the birdâ€dispersed plant parasite <i>Phoradendron californicum</i> (Viscaceae) in the Sonoran Desert. American Journal of Botany, 2015, 102, 149-164.	0.8	25
46	Conservation planning for freshwater ecosystems in Mexico. Biological Conservation, 2015, 191, 357-366.	1.9	27
47	The relationship among biodiversity, governance, wealth, and scientific capacity at a country level: Disaggregation and prioritization. Ambio, 2015, 44, 391-400.	2.8	11
48	Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 2014, 9, 221.	0.3	188
49	Rangeâ€wide ecological niche comparisons of parasite, hosts and dispersers in a vectorâ€borne plant parasite system. Journal of Biogeography, 2014, 41, 1664-1673.	1.4	21
50	Co-diversity and co-distribution in phyllostomid bats: Evaluating the relative roles of climate and niche conservatism. Basic and Applied Ecology, 2014, 15, 85-91.	1.2	8
51	RELATIONSHIP OF GENETIC DIVERSITY AND NICHE CENTRALITY: A SURVEY AND ANALYSIS. Evolution; International Journal of Organic Evolution, 2014, 68, 1082-1093.	1.1	130
52	Conservation genetics of Australasian sailfin lizards: Flagship species threatened by coastal development and insufficient protected area coverage. Biological Conservation, 2014, 169, 100-108.	1.9	13
53	Spatial scale and \hat{l}^2 -diversity of terrestrial vertebrates in Mexico. Revista Mexicana De Biodiversidad, 2014, 85, 918-930.	0.4	19
54	Processâ€based and correlative modeling of desert mistletoe distribution: a multiscalar approach. Ecosphere, 2013, 4, 1-23.	1.0	22

Andrés Lira-Noriega

#	Article	IF	CITATIONS
55	Range–diversity plots for conservation assessments: Using richness and rarity in priority setting. Biological Conservation, 2013, 158, 313-320.	1.9	20
56	Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 2013, 263, 10-18.	1.2	459
57	Research frontiers of early-career biogeographers. Frontiers of Biogeography, 2013, 5, .	0.8	0
58	Eco-cultural niches of the Badegoulian: Unraveling links between cultural adaptation and ecology during the Last Glacial Maximum in France. Journal of Anthropological Archaeology, 2011, 30, 359-374.	0.7	50
59	Dominant climate influences on North American bird distributions. Global Ecology and Biogeography, 2011, 20, 114-118.	2.7	60
60	The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 2011, 222, 1810-1819.	1.2	1,329
61	Multiscalar Ecological Characterization of Say's and Eastern Phoebes and Their Zone of Contact in the Great Plains. Condor, 2011, 113, 372-384.	0.7	6
62	Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises. Ecological Research, 2010, 25, 947-957.	0.7	28
63	Northern glacial refugia for the pygmy shrew <i>Sorex minutus</i> in Europe revealed by phylogeographic analyses and species distribution modelling. Ecography, 2010, 33, 260-271.	2.1	24
64	ENVIRONMENTAL CORRELATION STRUCTURE AND ECOLOGICAL NICHE MODEL PROJECTIONS. Biodiversity Informatics, 2009, 6, .	3.0	51
65	The climate envelope may not be empty. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E47-E47.	3.3	19
66	Scale dependency of diversity components estimated from primary biodiversity data and distribution maps. Diversity and Distributions, 2007, 13, 185-195.	1.9	37
67	Composición florÃstica en potreros de Los Tuxtlas, Veracruz, México. Acta Botanica Mexicana, 2007, , 59-87.	0.1	16
68	SEMINARIOS EN LÃNEA SOBRE ANÃLISIS ESPACIALES CON ÉNFASIS EN MODELOS DE NICHO ECOLÓGICO. Biodiversity Informatics, 0, 12, .	3.0	5
69	Contrasting evolutionary processes drive morphological and genetic differentiation in a subtropical fir (Abies, Pinaceae) species complex. Botanical Journal of the Linnean Society, 0, , .	0.8	6