

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936341/publications.pdf Version: 2024-02-01

		492	1755
458	55,891	129	212
papers	citations	h-index	g-index
487	487	487	35709
all docs	docs citations	times ranked	citing authors

Πιρκ Ινιζà @

#	Article	IF	CITATIONS
1	GATEWAYâ,,¢ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 2002, 7, 193-195.	8.8	3,390
2	PlantL-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 2000, 80, 825-860.	3.5	1,076
3	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843-852.	6.6	930
4	NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature, 2010, 464, 788-791.	27.8	832
5	Cell Cycle Regulation in Plant Development. Annual Review of Genetics, 2006, 40, 77-105.	7.6	704
6	Transcriptomic Footprints Disclose Specificity of Reactive Oxygen Species Signaling in Arabidopsis Â. Plant Physiology, 2006, 141, 436-445.	4.8	683
7	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653-1668.	6.6	595
8	The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 2018, 23, 311-323.	8.8	576
9	The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development. Plant Cell, 2000, 12, 97-109.	6.6	551
10	Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development (Cambridge), 2007, 134, 681-690.	2.5	540
11	Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. Plant Cell, 2002, 14, 903-916.	6.6	523
12	Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. Plant Cell, 2002, 14, 2339-2351.	6.6	523
13	The role of active oxygen species in plant signal transduction. Plant Science, 2001, 161, 405-414.	3.6	493
14	Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis Â. Plant Physiology, 2005, 139, 806-821.	4.8	476
15	Superoxide Dismutase in Plants. Critical Reviews in Plant Sciences, 1994, 13, 199-218.	5.7	450
16	Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 2012, 17, 332-340.	8.8	446
17	Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science, 2004, 9, 433-440.	8.8	431
18	A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Current Biology, 2010, 20, 1697-1706.	3.9	431

#	Article	IF	CITATIONS
19	More from less: plant growth under limited water. Current Opinion in Biotechnology, 2010, 21, 197-203.	6.6	427
20	Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase <i>UGT74E2</i> Modulates <i>Arabidopsis</i> Architecture and Water Stress Tolerance. Plant Cell, 2010, 22, 2660-2679.	6.6	407
21	An abscisic acid-sensitive checkpoint in lateral root development ofArabidopsis. Plant Journal, 2003, 33, 543-555.	5.7	402
22	The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions. Plant Physiology, 2013, 162, 1768-1779.	4.8	385
23	A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8595-8600.	7.1	378
24	Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development EMBO Journal, 1995, 14, 3925-3936.	7.8	375
25	Control of proliferation, endoreduplication and differentiation by theArabidopsisE2Fa-DPa transcription factor. EMBO Journal, 2002, 21, 1360-1368.	7.8	373
26	Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured <i>Arabidopsis</i> cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1380-1385.	7.1	367
27	Exit from Proliferation during Leaf Development in Arabidopsis thaliana: A Not-So-Gradual Process. Developmental Cell, 2012, 22, 64-78.	7.0	361
28	The <i>SAUR19</i> subfamily of <i>SMALL AUXIN UP RNA</i> genes promote cell expansion. Plant Journal, 2012, 70, 978-990.	5.7	359
29	Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the <i>Arabidopsis</i> Root. Science, 2008, 322, 594-597.	12.6	342
30	Cyclin-Dependent Kinases and Cell Division in Plants—The Nexus. Plant Cell, 1999, 11, 509-521.	6.6	340
31	Oxidative stress in plants. Current Opinion in Biotechnology, 1995, 6, 153-158.	6.6	338
32	PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2015, 43, D974-D981.	14.5	329
33	Fatty Acid Hydroperoxides and H2O2 in the Execution of Hypersensitive Cell Death in Tobacco Leaves Â. Plant Physiology, 2005, 138, 1516-1526.	4.8	324
34	Jasmonate-inducible gene: what does it mean?. Trends in Plant Science, 2009, 14, 87-91.	8.8	320
35	Targeted interactomics reveals a complex core cell cycle machinery in <i>Arabidopsis thaliana</i> . Molecular Systems Biology, 2010, 6, 397.	7.2	315
36	The ins and outs of the plant cell cycle. Nature Reviews Molecular Cell Biology, 2007, 8, 655-665.	37.0	314

#	Article	IF	CITATIONS
37	A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proceedings of the United States of America, 2003, 100, 16113-16118.	7.1	309
38	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	6.6	309
39	Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant Journal, 2002, 32, 329-342.	5.7	308
40	Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5614-5619.	7.1	307
41	Type II Metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana Cleave Substrates after Arginine and Lysine. Journal of Biological Chemistry, 2004, 279, 45329-45336.	3.4	304
42	Catalase deficiency drastically affects gene expression induced by high light inArabidopsis thaliana. Plant Journal, 2004, 39, 45-58.	5.7	298
43	Cell Cycle Modulation in the Response of the Primary Root of Arabidopsis to Salt Stress. Plant Physiology, 2004, 135, 1050-1058.	4.8	296
44	Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science, 2013, 18, 428-439.	8.8	288
45	The Plant-Specific Cyclin-Dependent Kinase CDKB1;1 and Transcription Factor E2Fa-DPa Control the Balance of Mitotically Dividing and Endoreduplicating Cells in Arabidopsis. Plant Cell, 2004, 16, 2683-2692.	6.6	277
46	Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal, 2003, 33, 621-632.	5.7	272
47	Bimodular auxin response controls organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2705-2710.	7.1	271
48	Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress Â. Plant Physiology, 2009, 152, 226-244.	4.8	269
49	Pause-and-Stop: The Effects of Osmotic Stress on Cell Proliferation during Early Leaf Development in <i>Arabidopsis</i> and a Role for Ethylene Signaling in Cell Cycle Arrest. Plant Cell, 2011, 23, 1876-1888.	6.6	268
50	Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology, 2011, 29, 212-214.	17.5	267
51	Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint. Plant Cell, 2007, 19, 211-225.	6.6	258
52	Cell cycle: the key to plant growth control?. Trends in Plant Science, 2003, 8, 154-158.	8.8	256
53	Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in <i>Nicotiana tabacum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2447-2452.	7.1	255
54	Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant Journal, 1998, 16, 235-245.	5.7	251

#	Article	IF	CITATIONS
55	The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA;1 Kinase Complexes. Plant Cell, 2005, 17, 1723-1736.	6.6	248
56	Lateral Root Initiation or the Birth of a New Meristem. Plant Molecular Biology, 2006, 60, 871-887.	3.9	248
57	Genome-Wide Analysis of Gene Expression Profiles Associated with Cell Cycle Transitions in Growing Organs of Arabidopsis. Plant Physiology, 2005, 138, 734-743.	4.8	247
58	A novel role for abscisic acid emerges from underground. Trends in Plant Science, 2006, 11, 434-439.	8.8	241
59	Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry and Biology, 2009, 16, 594-604.	6.0	240
60	H2O2 and NO: redox signals in disease resistance. Trends in Plant Science, 1998, 3, 330-334.	8.8	238
61	Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO Journal, 1999, 18, 3973-3980.	7.8	238
62	ARABIDOPSIS TRITHORAX1 Dynamically Regulates <i>>FLOWERING LOCUS C</i> >Activation via Histone 3 Lysine 4 Trimethylation. Plant Cell, 2008, 20, 580-588.	6.6	236
63	SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana. Plant Cell, 2006, 18, 3145-3157.	6.6	234
64	Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Molecular Biology, 1996, 32, 1003-1018.	3.9	232
65	Postâ€ŧranscriptional control of <i><scp>GRF</scp></i> transcription factors by micro <scp>RNA</scp> miR396 and <scp>GIF</scp> coâ€activator affects leaf size and longevity. Plant Journal, 2014, 79, 413-426.	5.7	231
66	Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany, 2005, 56, 2527-2538.	4.8	230
67	Genome-Wide Identification of Potential Plant E2F Target Genes. Plant Physiology, 2005, 139, 316-328.	4.8	229
68	Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16, 167.	8.8	225
69	Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science, 2014, 19, 231-239.	8.8	224
70	Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO Journal, 2002, 21, 6036-6049.	7.8	222
71	Increased Leaf Size: Different Means to an End Â. Plant Physiology, 2010, 153, 1261-1279.	4.8	222
72	CDK-related protein kinases in plants. Plant Molecular Biology, 2000, 43, 607-620.	3.9	221

#	Article	IF	CITATIONS
73	ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during <i>Arabidopsis</i> Leaf Development. Plant Cell, 2014, 26, 210-229.	6.6	219
74	Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant Journal, 1999, 17, 647-656.	5.7	217
75	Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell, 2004, 16, 1925-1937.	6.6	217
76	The Role of the <i>Arabidopsis</i> E2FB Transcription Factor in Regulating Auxin-Dependent Cell Division. Plant Cell, 2005, 17, 2527-2541.	6.6	210
77	ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis Â. Plant Physiology, 2013, 162, 319-332.	4.8	210
78	Metacaspase Activity of Arabidopsis thaliana Is Regulated by S-Nitrosylation of a Critical Cysteine Residue. Journal of Biological Chemistry, 2007, 282, 1352-1358.	3.4	209
79	Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFPâ€ŧagged proteins. Plant Journal, 2004, 40, 386-398.	5.7	204
80	A Local Maximum in Gibberellin Levels Regulates Maize Leaf Growth by Spatial Control of Cell Division. Current Biology, 2012, 22, 1183-1187.	3.9	200
81	Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant Journal, 1996, 10, 491-503.	5.7	199
82	A Tandem Affinity Purification-based Technology Platform to Study the Cell Cycle Interactome in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2007, 6, 1226-1238.	3.8	196
83	Molecular Markers and Cell Cycle Inhibitors Show the Importance of Cell Cycle Progression in Nematode-Induced Galls and Syncytia. Plant Cell, 1999, 11, 793-807.	6.6	195
84	Cold Nights Impair Leaf Growth and Cell Cycle Progression in Maize through Transcriptional Changes of Cell Cycle Genes. Plant Physiology, 2007, 143, 1429-1438.	4.8	193
85	Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in <i>Artemisia annua</i> plants. New Phytologist, 2011, 189, 176-189.	7.3	192
86	<i>Arabidopsis</i> SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability. Plant Cell, 2014, 26, 3132-3147.	6.6	192
87	Systemsâ€based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Molecular Systems Biology, 2012, 8, 606.	7.2	191
88	Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5146-5151.	7.1	190
89	When plant cells decide to divide. Trends in Plant Science, 2001, 6, 359-364.	8.8	189
90	CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset Â. Plant Physiology, 2009, 150, 1482-1493.	4.8	188

#	Article	IF	CITATIONS
91	Expression of the <i>Arabidopsis</i> jasmonate signalling repressor <i>JAZ1</i> / <i>TIFY10A</i> is stimulated by auxin. EMBO Reports, 2009, 10, 923-928.	4.5	184
92	Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco Â. Plant Physiology, 2006, 141, 404-411.	4.8	180
93	Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant Journal, 1998, 14, 759-764.	5.7	178
94	Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science, 2010, 15, 419-422.	8.8	177
95	Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 2000, 211, 632-640.	3.2	176
96	Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis Â. Plant Physiology, 2015, 167, 800-816.	4.8	176
97	Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4868-4872.	7.1	175
98	Atypical E2F activity restrains APC/C ^{CCS52A2} function obligatory for endocycle onset. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14721-14726.	7.1	175
99	B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana. Plant Cell, 2004, 16, 945-955.	6.6	173
100	The DP-E2F-like Gene DEL1 Controls the Endocycle in Arabidopsis thaliana. Current Biology, 2005, 15, 59-63.	3.9	173
101	Variation in Growth Rate between Arabidopsis Ecotypes Is Correlated with Cell Division and A-Type Cyclin-Dependent Kinase Activity. Plant Physiology, 2002, 129, 854-864.	4.8	169
102	Differential Effect of Jasmonic Acid and Abscisic Acid on Cell Cycle Progression in Tobacco BY-2 Cells. Plant Physiology, 2002, 128, 201-211.	4.8	168
103	The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth. Plant Cell, 2007, 19, 417-432.	6.6	168
104	Functional Modules in the <i>Arabidopsis</i> Core Cell Cycle Binary Protein–Protein Interaction Network. Plant Cell, 2010, 22, 1264-1280.	6.6	168
105	Serpin1 of Arabidopsis thaliana is a Suicide Inhibitor for Metacaspase 9. Journal of Molecular Biology, 2006, 364, 625-636.	4.2	167
106	Histological Study of Seed Coat Development in Arabidopsis thaliana. Journal of Plant Research, 2000, 113, 139-148.	2.4	166
107	Mass Spectrometry-Based Sequencing of Lignin Oligomers. Plant Physiology, 2010, 153, 1464-1478.	4.8	166
108	In Vivo Dynamics and Differential Microtubule-Binding Activities of MAP65 Proteins. Plant Physiology, 2004, 136, 3956-3967.	4.8	163

#	Article	IF	CITATIONS
109	What Is Stress? Dose-Response Effects in Commonly Used in Vitro Stress Assays. Plant Physiology, 2014, 165, 519-527.	4.8	161
110	Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10870-10875.	7.1	160
111	Signal transduction during oxidative stress. Journal of Experimental Botany, 2002, 53, 1227-36.	4.8	158
112	Plant cell cycle transitions. Current Opinion in Plant Biology, 2003, 6, 536-543.	7.1	157
113	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
114	The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7754-7759.	7.1	154
115	Dynamic Changes in ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory Mechanism in the Maize Leaf. Plant Cell, 2015, 27, 1605-1619.	6.6	154
116	Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist, 2013, 197, 490-502.	7.3	151
117	Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant Journal, 2005, 44, 1065-1076.	5.7	150
118	Arabidopsis thaliana NADPH Oxidoreductase Homologs Confer Tolerance of Yeasts toward the Thiol-oxidizing Drug Diamide. Journal of Biological Chemistry, 1995, 270, 26224-26231.	3.4	145
119	A Plant-specific Cyclin-dependent Kinase Is Involved in the Control of G2/M Progression in Plants. Journal of Biological Chemistry, 2001, 276, 36354-36360.	3.4	145
120	A Role for AtWRKY23 in Feeding Site Establishment of Plant-Parasitic Nematodes. Plant Physiology, 2008, 148, 358-368.	4.8	145
121	Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Letters, 1996, 391, 175-180.	2.8	142
122	Switching the Cell Cycle. Kip-Related Proteins in Plant Cell Cycle Control. Plant Physiology, 2005, 139, 1099-1106.	4.8	142
123	The Heat-Shock Element Is a Functional Component of the Arabidopsis APX1 Gene Promoter. Plant Physiology, 1998, 118, 1005-1014.	4.8	140
124	Transcriptome analysis during cell division in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14825-14830.	7.1	140
125	Systems analysis of the responses to longâ€ŧerm magnesium deficiency and restoration in <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 187, 132-144.	7.3	140
126	Mass Spectrometry-Based Fragmentation as an Identification Tool in Lignomics. Analytical Chemistry, 2010, 82, 8095-8105.	6.5	140

#	Article	IF	CITATIONS
127	Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls. Plant Physiology, 2005, 139, 1773-1783.	4.8	139
128	Novel Plant-specific Cyclin-dependent Kinase Inhibitors Induced by Biotic and Abiotic Stresses. Journal of Biological Chemistry, 2007, 282, 25588-25596.	3.4	139
129	The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant Journal, 1996, 10, 601-612.	5.7	138
130	Chemical inhibitors: a tool for plant cell cycle studies. FEBS Letters, 2000, 476, 78-83.	2.8	138
131	PSKâ€Î± promotes root growth in Arabidopsis. New Phytologist, 2009, 181, 820-831.	7.3	136
132	AUREOCHROME1a-Mediated Induction of the Diatom-Specific Cyclin <i>dsCYC2</i> Controls the Onset of Cell Division in Diatoms (<i>Phaeodactylum tricornutum</i>). Plant Cell, 2013, 25, 215-228.	6.6	136
133	A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta, 1999, 208, 453-462.	3.2	135
134	The NADPH:Quinone Oxidoreductase P1-ζ-crystallin in Arabidopsis Catalyzes the α,β-Hydrogenation of 2-Alkenals: Detoxication of the Lipid Peroxide-Derived Reactive Aldehydes. Plant and Cell Physiology, 2002, 43, 1445-1455.	3.1	134
135	A Hormone and Proteome Approach to Picturing the Initial Metabolic Events During Plasmodiophora brassicae Infection on Arabidopsis. Molecular Plant-Microbe Interactions, 2006, 19, 1431-1443.	2.6	133
136	Early transcriptomic changes induced by magnesium deficiency in <i>Arabidopsis thaliana</i> reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acidâ€responsive genes. New Phytologist, 2010, 187, 119-131.	7.3	133
137	VirtualLeaf: An Open-Source Framework for Cell-Based Modeling of Plant Tissue Growth and Development Â. Plant Physiology, 2011, 155, 656-666.	4.8	132
138	High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll. Plant Methods, 2010, 6, 17.	4.3	130
139	A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in <i>Arabidopsis thaliana</i> . The Arabidopsis Book, 2015, 13, e0181.	0.5	130
140	The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Letters, 1998, 440, 1-7.	2.8	128
141	Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in <i>Arabidopsis</i> . Genes and Development, 2017, 31, 197-208.	5.9	128
142	Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation. Plant Journal, 1996, 10, 1037-1043.	5.7	125
143	Spatial Distribution of Cell Division Rate Can Be Deduced from that of p34cdc2 Kinase Activity in Maize Leaves Grown at Contrasting Temperatures and Soil Water Conditions. Plant Physiology, 2000, 124, 1393-1402.	4.8	123
144	Hydrogen Peroxide-Induced Gene Expression across Kingdoms: A Comparative Analysis. Molecular Biology and Evolution, 2008, 25, 507-516.	8.9	122

#	Article	IF	CITATIONS
145	Metabolomics Enables the Structure Elucidation of a Diatom Sex Pheromone. Angewandte Chemie - International Edition, 2013, 52, 854-857.	13.8	122
146	Green light for the cell cycle. EMBO Journal, 2005, 24, 657-662.	7.8	121
147	The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiology, 2005, 137, 127-140.	4.8	121
148	The Arabidopsis Functional Homolog of the p34 cdc2 Protein Kinase. Plant Cell, 1991, 3, 531.	6.6	120
149	Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 615-620.	7.1	119
150	Higher plants possess two structurally different poly(ADP-ribose) polymerases. Plant Journal, 1998, 15, 635-645.	5.7	118
151	A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nature Chemical Biology, 2012, 8, 798-805.	8.0	118
152	A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. Plant Cell, 2015, 27, 2273-2287.	6.6	118
153	Zeatin is indispensable for the G2 -M transition in tobacco BY-2 cells. FEBS Letters, 1998, 426, 29-32.	2.8	116
154	Mutations in the PILZ group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. European Journal of Cell Biology, 1999, 78, 100-108.	3.6	116
155	Genetic Complexity of Cellulose Synthase A Gene Function in Arabidopsis Embryogenesis. Plant Physiology, 2002, 130, 1883-1893.	4.8	116
156	Mitochondrial typeâ€I prohibitins of <i>Arabidopsis thaliana</i> are required for supporting proficient meristem development. Plant Journal, 2007, 52, 850-864.	5.7	114
157	Somatic Cytokinesis and Pollen Maturation in Arabidopsis Depend on TPLATE, Which Has Domains Similar to Coat Proteins. Plant Cell, 2007, 18, 3502-3518.	6.6	113
158	Developmental regulation of CYCA2s contributes to tissue-specific proliferation in <i>Arabidopsis</i> . EMBO Journal, 2011, 30, 3430-3441.	7.8	113
159	CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytologist, 2012, 195, 707-720.	7.3	113
160	Translational control of eukaryotic gene expression. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 143-168.	5.2	112
161	Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138, 121-138.	11.1	111
162	Functional Specialization of the TRANSPARENT TESTA GLABRA1 Network Allows Differential Hormonal Control of Laminal and Marginal Trichome Initiation in Arabidopsis Rosette Leaves. Plant Physiology, 2008, 148, 1453-1464.	4.8	110

#	Article	IF	CITATIONS
163	Boosting tandem affinity purification of plant protein complexes. Trends in Plant Science, 2008, 13, 517-520.	8.8	108
164	Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 2003, 160, 509-515.	3.5	107
165	Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene, 1989, 84, 359-369.	2.2	106
166	A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proceedings of the United States of America, 2004, 101, 13380-13385.	7.1	105
167	Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science, 1998, 138, 27-34.	3.6	102
168	Source–Sink Regulation in Crops under Water Deficit. Trends in Plant Science, 2019, 24, 652-663.	8.8	102
169	The Cyclin-Dependent Kinase Inhibitor Orysa;KRP1 Plays an Important Role in Seed Development of Rice. Plant Physiology, 2006, 142, 1053-1064.	4.8	101
170	DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity Â. Plant Physiology, 2012, 159, 739-747.	4.8	100
171	GROWTH REGULATING FACTOR5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity Â. Plant Physiology, 2015, 167, 817-832.	4.8	100
172	AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta, 2007, 225, 1339-1351.	3.2	99
173	The APC/C <i>subunit 10</i> plays an essential role in cell proliferation during leaf development. Plant Journal, 2011, 68, 351-363.	5.7	99
174	T-Loop Phosphorylation of Arabidopsis CDKA;1 Is Required for Its Function and Can Be Partially Substituted by an Aspartate Residue. Plant Cell, 2007, 19, 972-985.	6.6	98
175	Canalization without flux sensors: a traveling-wave hypothesis. Trends in Plant Science, 2007, 12, 384-390.	8.8	98
176	SHORT-ROOT and SCARECROW Regulate Leaf Growth in Arabidopsis by Stimulating S-Phase Progression of the Cell Cycle. Plant Physiology, 2010, 154, 1183-1195.	4.8	98
177	The Rhodococcus fascians-plant interaction: morphological traits and biotechnological applications. Planta, 2000, 210, 241-251.	3.2	97
178	CEO1, a new protein fromArabidopsis thaliana, protects yeast against oxidative damage1. FEBS Letters, 2000, 482, 19-24.	2.8	97
179	Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. Journal of Experimental Botany, 1999, 50, 71-78.	4.8	96
180	A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Molecular Genetics and Genomics, 1991, 225, 459-467.	2.4	95

#	Article	IF	CITATIONS
181	Molecular and Physiological Analysis of Growth-Limiting Drought Stress in Brachypodium distachyon Leaves. Molecular Plant, 2013, 6, 311-322.	8.3	94
182	David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops?. Current Opinion in Plant Biology, 2009, 12, 157-164.	7.1	93
183	RNA Interference Knockdown of BRASSINOSTEROID INSENSITIVE1 in Maize Reveals Novel Functions for Brassinosteroid Signaling in Controlling Plant Architecture. Plant Physiology, 2015, 169, 826-839.	4.8	93
184	Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Current Opinion in Systems Biology, 2017, 4, 58-63.	2.6	92
185	NaCl and CuSO4 treatments trigger distinct oxidative defence mechanisms in Nicotiana plumbaginifolia L. Plant, Cell and Environment, 1999, 22, 387-396.	5.7	91
186	Î ³ -Glutamyl Transpeptidase in Transgenic Tobacco Plants. Cellular Localization, Processing, and Biochemical Properties. Plant Physiology, 2002, 128, 1109-1119.	4.8	91
187	Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biology, 2010, 11, R17.	9.6	91
188	Molecular identification of catalases fromNicotiana plumbaginifolia(L.). FEBS Letters, 1994, 352, 79-83.	2.8	90
189	TheArabidopsisCks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Letters, 1997, 412, 446-452.	2.8	90
190	An Auxin-Regulated Gene of Arabidopsis thaliana Encodes a DNA-Binding Protein. Plant Physiology, 1989, 89, 743-752.	4.8	89
191	Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications, 2017, 8, 14752.	12.8	89
192	Leaf growth in dicots and monocots: so different yet so alike. Current Opinion in Plant Biology, 2016, 33, 72-76.	7.1	87
193	Cell Cycle-Dependent Targeting of a Kinesin at the Plasma Membrane Demarcates the Division Site in Plant Cells. Current Biology, 2006, 16, 308-314.	3.9	86
194	The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis. Plant Physiology, 2015, 169, 166-179.	4.8	86
195	From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Molecular Systems Biology, 2017, 13, 961.	7.2	86
196	A molecular study of root-knot nematode-induced feeding sites. Plant Journal, 1996, 9, 45-54.	5.7	85
197	The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO Journal, 2008, 27, 1840-1851.	7.8	85
198	DRL1, a Homolog of the Yeast TOT4/KTI12 Protein, Has a Function in Meristem Activity and Organ Growth in Plants. Plant Cell, 2003, 15, 639-654.	6.6	84

#	Article	IF	CITATIONS
199	Differential Methylation during Maize Leaf Growth Targets Developmentally Regulated Genes Â. Plant Physiology, 2014, 164, 1350-1364.	4.8	84
200	Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. Plant Cell, 2016, 28, 2417-2434.	6.6	83
201	Molecular networks regulating cell division during Arabidopsis leaf growth. Journal of Experimental Botany, 2020, 71, 2365-2378.	4.8	83
202	Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells Â. Plant Physiology, 2011, 156, 2172-2183.	4.8	81
203	Characterization of two distinct DP-related genes fromArabidopsis thaliana1. FEBS Letters, 2000, 486, 79-87.	2.8	80
204	SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13853-13858.	7.1	80
205	In search of new tractable diatoms for experimental biology. BioEssays, 2008, 30, 692-702.	2.5	79
206	Systematic Localization of the Arabidopsis Core Cell Cycle Proteins Reveals Novel Cell Division Complexes Â. Plant Physiology, 2010, 152, 553-565.	4.8	79
207	Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany, 2016, 67, 5825-5840.	4.8	78
208	Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. Journal of Experimental Botany, 2000, 51, 1189-1200.	4.8	77
209	Translational research: from pot to plot. Plant Biotechnology Journal, 2014, 12, 277-285.	8.3	77
210	SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nature Communications, 2016, 7, 11192.	12.8	77
211	Upstream sequences regulating legumin gene expression in heterologous transgenic plants. Molecular Genetics and Genomics, 1991, 225, 121-128.	2.4	76
212	Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant, Cell and Environment, 2017, 40, 180-189.	5.7	76
213	Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. Journal of Cell Science, 2003, 116, 4249-4259.	2.0	75
214	Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis Â. Plant Physiology, 2011, 155, 1339-1352.	4.8	75
215	Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon. Molecular Plant, 2013, 6, 423-443.	8.3	75
216	Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in <i>Arabidopsis</i> . Journal of Cell Science, 2010, 123, 451-459.	2.0	74

#	Article	IF	CITATIONS
217	Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant Journal, 2019, 97, 805-824.	5.7	74
218	Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Letters, 1998, 422, 165-169.	2.8	73
219	Connecting genes to metabolites by a systems biology approach. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9949-9950.	7.1	73
220	Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytologist, 2011, 192, 428-436.	7.3	73
221	The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 2018, 16, 615-627.	8.3	73
222	ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO Journal, 2008, 27, 2746-2756.	7.8	71
223	Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta, 2000, 211, 623-631.	3.2	70
224	The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14, 1266-1280.	8.3	70
225	Mitosis-specific kinesins in Arabidopsis. Trends in Plant Science, 2006, 11, 167-175.	8.8	69
226	Quantitation of artemisinin and its biosynthetic precursors in Artemisia annua L. by high performance liquid chromatography–electrospray quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A, 2006, 1118, 180-187.	3.7	69
227	F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana. Plant and Cell Physiology, 2017, 58, 962-975.	3.1	69
228	Extensin gene expression is induced by mechanical stimuli leading to local cell wall strengthening in Nicotiana plumbaginifolia. Planta, 1994, 195, 175-181.	3.2	67
229	Polyamines and Paraquat Toxicity in Arabidopsis thaliana. Plant and Cell Physiology, 1998, 39, 987-992.	3.1	67
230	Chloroplasts Are Central Players in Sugar-Induced Leaf Growth. Plant Physiology, 2016, 171, 590-605.	4.8	67
231	Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO Journal, 2011, 30, 355-363.	7.8	66
232	RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. Journal of Experimental Botany, 2016, 67, 4863-4875.	4.8	66
233	What if higher plants lack a CDC25 phosphatase?. Trends in Plant Science, 2006, 11, 474-479.	8.8	65
234	Cyclin-dependent Kinase (CDK) Inhibitors Regulate the CDK-Cyclin Complex Activities in Endoreduplicating Cells of Developing Tomato Fruit. Journal of Biological Chemistry, 2006, 281, 7374-7383.	3.4	65

#	Article	IF	CITATIONS
235	Physiological and Transcriptomic Evidence for a Close Coupling between Chloroplast Ontogeny and Cell Cycle Progression in the Pennate Diatom <i>Seminavis robusta</i> Â Â Â Â. Plant Physiology, 2008, 148, 1394-1411.	4.8	65
236	Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant Journal, 2009, 57, 184-194.	5.7	65
237	PHENOPSIS DB: an Information System for Arabidopsis thalianaphenotypic data in an environmental context. BMC Plant Biology, 2011, 11, 77.	3.6	65
238	Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle, phragmoplast, and chromosomes. FEBS Letters, 1997, 418, 229-234.	2.8	64
239	Genome-Wide Analysis of Core Cell Cycle Genes in the Unicellular Green Alga Ostreococcus tauri. Molecular Biology and Evolution, 2005, 22, 589-597.	8.9	64
240	The <i>PRA1</i> Gene Family in Arabidopsis Â. Plant Physiology, 2008, 147, 1735-1749.	4.8	63
241	Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 2019, 162, 749-758.	7.7	63
242	Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome, 2020, 8, 54.	11.1	63
243	CORNET: A User-Friendly Tool for Data Mining and Integration Â. Plant Physiology, 2010, 152, 1167-1179.	4.8	62
244	CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant Journal, 2001, 25, 617-626.	5.7	61
245	Plants grow with a little help from their organelle friends. Journal of Experimental Botany, 2016, 67, 6267-6281.	4.8	61
246	Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiology, 2002, 128, 201-11.	4.8	61
247	A Temperature-sensitive Mutation in the Arabidopsis thaliana Phosphomannomutase Gene Disrupts Protein Glycosylation and Triggers Cell Death. Journal of Biological Chemistry, 2008, 283, 5708-5718.	3.4	60
248	A negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene, 1993, 136, 79-85.	2.2	59
249	Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. and regeneration of transgenic plants. Plant Cell Reports, 1996, 15, 929-933.	5.6	59
250	Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta, 1999, 207, 496-504.	3.2	59
251	Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant Journal, 2000, 23, 123-130.	5.7	59
252	Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family. Plant Physiology, 2002, 130, 1230-1240.	4.8	59

#	Article	IF	CITATIONS
253	Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17844-17849.	7.1	59
254	Overexpression of <i><scp>GA</scp>20â€<scp>OXIDASE</scp>1</i> impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnology Journal, 2016, 14, 997-1007.	8.3	59
255	Secretion of Secondary Metabolites by ATP-Binding Cassette Transporters in Plant Cell Suspension Cultures. Plant Physiology, 2003, 131, 1161-1164.	4.8	58
256	Systematic analysis of cell ycle gene expression during Arabidopsis development. Plant Journal, 2009, 59, 645-660.	5.7	58
257	The MCM-Binding Protein ETG1 Aids Sister Chromatid Cohesion Required for Postreplicative Homologous Recombination Repair. PLoS Genetics, 2010, 6, e1000817.	3.5	58
258	Nucleotide Sequence of a Complementary DNA Encoding <i>O</i> -Methyltransferase from Poplar. Plant Physiology, 1992, 98, 796-797.	4.8	57
259	Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B. Molecular Plant, 2014, 7, 773-791.	8.3	57
260	Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH:isoflavone oxidoreductase. FEBS Journal, 1991, 200, 751-757.	0.2	56
261	High meiotic stability of a foreign gene introduced into tobacco by Agrobacterium-mediated transformation. Molecular Genetics and Genomics, 1987, 207, 171-175.	2.4	55
262	Analysis of the Spatial Expression Pattern of Seven Kip Related Proteins (KRPs) in the Shoot Apex of Arabidopsis thaliana. Annals of Botany, 2004, 93, 575-580.	2.9	55
263	Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant Journal, 2004, 37, 889-896.	5.7	55
264	Combined linkage and association mapping reveals <i>CYCD5;1</i> as a quantitative trait gene for endoreduplication in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4678-4683.	7.1	55
265	Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. Journal of Experimental Botany, 2012, 63, 4263-4273.	4.8	55
266	Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development. Plant Physiology, 2017, 173, 1269-1282.	4.8	55
267	Expression ofsodCpandsodBgenes inNicotiana tabacum: effects of light and copper excess. Journal of Experimental Botany, 1997, 48, 2007-2014.	4.8	54
268	Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C1. Journal of Experimental Botany, 2000, 51, 1763-1764.	4.8	54
269	Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry, 2007, 68, 2773-2785.	2.9	54
270	The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nature Communications, 2017, 8, 15235.	12.8	54

#	Article	IF	CITATIONS
271	Iron-Regulated Expression of a Cytosolic Ascorbate Peroxidase Encoded by the APX1 Gene in Arabidopsis Seedlings. Plant Physiology, 2004, 134, 605-613.	4.8	53
272	A Model of Differential Growth-Guided Apical Hook Formation in Plants. Plant Cell, 2016, 28, 2464-2477.	6.6	53
273	Title is missing!. Plant Cell, Tissue and Organ Culture, 2002, 69, 167-176.	2.3	52
274	A Plant-Specific Subclass of C-Terminal Kinesins Contains a Conserved A-Type Cyclin-Dependent Kinase Site Implicated in Folding and Dimerization. Plant Physiology, 2004, 135, 1417-1429.	4.8	52
275	Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis. Plant Journal, 2012, 69, 553-563.	5.7	52
276	Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biology, 2015, 16, 168.	8.8	52
277	lron triggers a rapid induction of ascorbate peroxidase gene expression inBrassica napus. FEBS Letters, 1997, 410, 195-200.	2.8	51
278	The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. Journal of Plant Research, 2006, 119, 43-50.	2.4	51
279	Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L Plant Cell Reports, 1998, 18, 105-110.	5.6	50
280	Cyclin-Dependent Kinase Inhibitors in Yeast, Animals, and Plants: A Functional Comparison. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 293-313.	5.2	50
281	Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Journal of Proteome Research, 2016, 15, 4304-4317.	3.7	50
282	Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of <i>CYCLIN D3</i> Genes. Plant Physiology, 2018, 178, 217-232.	4.8	50
283	Tissue Culture of Oil Palm: Finding the Balance Between Mass Propagation and Somaclonal Variation. Frontiers in Plant Science, 2019, 10, 722.	3.6	50
284	The Arabidopsis thaliana PIN1At Gene Encodes a Single-domain Phosphorylation-dependent Peptidyl Prolylcis/trans Isomerase. Journal of Biological Chemistry, 2000, 275, 10577-10581.	3.4	49
285	Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins. Plant Molecular Biology, 2002, 50, 109-125.	3.9	49
286	Molecular systems governing leaf growth: from genes to networks. Journal of Experimental Botany, 2015, 66, 1045-1054.	4.8	49
287	Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network. Plant Physiology, 2016, 170, 1848-1867.	4.8	49
288	Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions. Scientific Reports, 2018, 8, 13447.	3.3	48

#	Article	IF	CITATIONS
289	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653.	6.6	47
290	The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. Journal of Experimental Botany, 2001, 52, 181-182.	4.8	46
291	Impact of segmental chromosomal duplications on leaf size in the <i>grandifoliaâ€D</i> mutants of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 60, 122-133.	5.7	46
292	The cell cycle in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36, 9-19.	5.8	45
293	Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Plant Molecular Biology, 2000, 43, 583-593.	3.9	45
294	Structural assessment of the impact of environmental constraints on <i>Arabidopsis thaliana</i> leaf growth: a 3D approach. Plant, Cell and Environment, 2012, 35, 1631-1646.	5.7	45
295	Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 2020, 71, 1706-1722.	4.8	45
296	STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007218.	3.5	45
297	Jasmonic acid prevents the accumulation of cyclin B1;1 and CDK-B in synchronized tobacco BY-2 cells. FEBS Letters, 2004, 572, 118-122.	2.8	44
298	Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression. Plant Physiology, 2017, 173, 582-599.	4.8	44
299	A novel NADPH:diamide oxidoreductase activity in Arabidopsis thaliana P1 ζ-crystallin. FEBS Journal, 2000, 267, 3661-3671.	0.2	43
300	The cell-cycle interactome: a source of growth regulators?. Journal of Experimental Botany, 2014, 65, 2715-2730.	4.8	43
301	A Generic Tool for Transcription Factor Target Gene Discovery in Arabidopsis Cell Suspension Cultures Based on Tandem Chromatin Affinity Purification. Plant Physiology, 2014, 164, 1122-1133.	4.8	43
302	Emerging Connections between Small RNAs and Phytohormones. Trends in Plant Science, 2020, 25, 912-929.	8.8	43
303	A comparative study of seed yield parameters in <i>Arabidopsis thaliana</i> mutants and transgenics. Plant Biotechnology Journal, 2012, 10, 488-500.	8.3	42
304	Highâ€resolution timeâ€resolved imaging of <i>in vitro</i> Arabidopsis rosette growth. Plant Journal, 2014, 80, 172-184.	5.7	41
305	Factors regulating the expression of cell cycle genes in individual buds ofPopulus. Planta, 1997, 201, 43-52.	3.2	40
306	Auxin regulation of cell cycle and its role during lateral root initiation. Physiologia Plantarum, 2005, 123, 139-146.	5.2	40

#	Article	IF	CITATIONS
307	Identification of Four Adenosine Kinase Isoforms in Tobacco By-2 Cells and Their Putative Role in the Cell Cycle-regulated Cytokinin Metabolism. Journal of Biological Chemistry, 2005, 280, 17512-17519.	3.4	40
308	Arabidopsis PASTICCINO2 Is an Antiphosphatase Involved in Regulation of Cyclin-Dependent Kinase A. Plant Cell, 2006, 18, 1426-1437.	6.6	40
309	Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. Plant Physiology, 2022, 188, 898-918.	4.8	40
310	LEAF-E: a tool to analyze grass leaf growth using function fitting. Plant Methods, 2014, 10, 37.	4.3	39
311	Modification of the Expression of the Aquaporin ZmPIP2;5 Affects Water Relations and Plant Growth. Plant Physiology, 2020, 182, 2154-2165.	4.8	39
312	Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase. Biochemical and Biophysical Research Communications, 2004, 322, 734-739.	2.1	38
313	A Reciprocal ¹⁵ N-Labeling Proteomic Analysis of Expanding <i>Arabidopsis</i> Leaves Subjected to Osmotic Stress Indicates Importance of Mitochondria in Preserving Plastid Functions. Journal of Proteome Research, 2011, 10, 1018-1029.	3.7	38
314	Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana. ELife, 2014, 3, e02252.	6.0	38
315	Biotransformation of nicotine alkaloids by tobacco shooty teratomas induced by a Ti plasmid mutant. Plant Cell Reports, 1989, 7, 607-610.	5.6	37
316	Nucleotide Sequence of a cDNA Encoding Malic Enzyme from Poplar. Plant Physiology, 1991, 96, 1385-1386.	4.8	37
317	Solution Structure of the Single-domain Prolyl Cis/Trans Isomerase PIN1At from Arabidopsis thaliana. Journal of Molecular Biology, 2002, 320, 321-332.	4.2	36
318	A low content in zeatin type cytokinins is not restrictive for the occurrence of G1/S transition in tobacco BY-2 cells. FEBS Letters, 1999, 460, 123-128.	2.8	34
319	Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias(Streptophyta), with emphasis on the role of expansin. BMC Plant Biology, 2011, 11, 128.	3.6	34
320	Gateway vectors for transformation of cereals. Trends in Plant Science, 2013, 18, 1-4.	8.8	34
321	Drought resistance is mediated by divergent strategies in closely related Brassicaceae. New Phytologist, 2019, 223, 783-797.	7.3	34
322	Engineering Stress Tolerance in Maize. Outlook on Agriculture, 1998, 27, 115-124.	3.4	33
323	Molecular mechanisms of biomass increase in plants. Biotechnology Research and Innovation, 2017, 1, 14-25.	0.9	33
324	Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. Journal of Experimental Botany, 1999, 50, 71-78.	4.8	33

#	Article	IF	CITATIONS
325	A cdc2 gene of Petunia hybrida is differentially expressed in leaves, protoplasts and during various cell cycle phases. Plant Molecular Biology, 1992, 20, 1121-1130.	3.9	32
326	G2-and early-M-specific expression of the NTCYC1 cyclin gene in Nicotiana tabacum cells. Plant Molecular Biology, 1996, 32, 1093-1101.	3.9	32
327	Identification of anArabidopsis thalianacDNA encoding a HSP70-related protein belonging to the HSP110/SSE1 subfamily. FEBS Letters, 1996, 390, 113-118.	2.8	31
328	Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Molecular Biology, 2014, 85, 233-245.	3.9	31
329	Early mannitol-triggered changes in the Arabidopsis leaf (phospho)proteome reveal growth regulators. Journal of Experimental Botany, 2018, 69, 4591-4607.	4.8	31
330	cis-Cinnamic acid is a natural plant growth-promoting compound. Journal of Experimental Botany, 2019, 70, 6293-6304.	4.8	31
331	A New Bioassay for Auxins and Cytokinins. Plant Physiology, 1992, 99, 1090-1098.	4.8	30
332	Vesicle Trafficking during Somatic Cytokinesis. Plant Physiology, 2008, 147, 1544-1552.	4.8	30
333	The Cyclin-Dependent Kinase Inhibitor KRP6 Induces Mitosis and Impairs Cytokinesis in Giant Cells Induced by Plant-Parasitic Nematodes in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 2633-2647.	6.6	30
334	Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks. BMC Bioinformatics, 2016, 17, 18.	2.6	30
335	UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. ELife, 2020, 9, .	6.0	30
336	Sequence of aNicotiana plumbaginifoliaβ(1,3)-glucanase gene encoding a vacuolar isoform. Nucleic Acids Research, 1990, 18, 6685-6685.	14.5	29
337	Regulation of Cell Division inArabidopsis. Critical Reviews in Plant Sciences, 1996, 15, 97-112.	5.7	29
338	The Role of the Anaphase-Promoting Complex/Cyclosome in Plant Growth. Critical Reviews in Plant Sciences, 2015, 34, 487-505.	5.7	29
339	Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances, 2021, 53, 107677.	11.7	29
340	Gene Regulatory Network Inference: Connecting Plant Biology and Mathematical Modeling. Frontiers in Genetics, 2020, 11, 457.	2.3	29
341	Control of cell proliferation during plant development. Plant Molecular Biology, 1994, 26, 1289-1303.	3.9	28
342	Trehalose-6-P synthase AtTPS1 high molecular weight complexes in yeast and Arabidopsis. Plant Science, 2007, 173, 426-437.	3.6	27

#	Article	IF	CITATIONS
343	Plant Growth Beyond Limits. Trends in Plant Science, 2016, 21, 102-109.	8.8	27
344	A protein phosphatase 1 from Arabidopsis thaliana restores temperature sensitivity of a Schizosaccharomyces pombe cdc25ts/wee1- double mutant. Plant Journal, 1993, 4, 81-87.	5.7	26
345	Differential in vitro DNA binding activity to a promoter element of the gn1 beta-1,3-glucanase gene in hypersensitively reacting tobacco plants. Plant Journal, 1995, 7, 309-320.	5.7	26
346	Cloning of beta-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Molecular Biology, 2000, 42, 377-386.	3.9	26
347	Cyclin-dependent kinase activity retains the shoot apical meristem cells in an undifferentiated state. Plant Journal, 2010, 64, no-no.	5.7	26
348	Cell cycle control and plant morphogenesis: is there an essential link?. BioEssays, 1999, 21, 29-37.	2.5	25
349	Mutational analysis of twoArabidopsis thalianacyclin-dependent kinases in fission yeast. FEBS Letters, 1999, 446, 182-188.	2.8	25
350	The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 794-807.	6.6	25
351	Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology. Frontiers in Plant Science, 2021, 12, 640914.	3.6	25
352	Arabidopsis coactivator ALYâ€like proteins, DIP1 and DIP2, interact physically with the DNAâ€binding domain of the Znâ€finger poly(ADPâ€ribose) polymerase 1. Journal of Experimental Botany, 2001, 52, 1375-1380.	4.8	24
353	p13 and the WW Domain of PIN1 Bind to the Same Phosphothreonine-Proline Epitope. Journal of Biological Chemistry, 2001, 276, 1434-1438.	3.4	24
354	Abscisic acid, ethylene and gibberellic acid act at different developmental stages to instruct the adaptation of young leaves to stress. Plant Signaling and Behavior, 2010, 5, 473-475.	2.4	24
355	Sequence-specific protein aggregation generates defined protein knockdowns in plants. Plant Physiology, 2016, 171, pp.00335.2016.	4.8	24
356	Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. Plant Biotechnology Journal, 2020, 18, 553-567.	8.3	24
357	Post-translational modifications regulate the activity of the growth-restricting protease DA1. Journal of Experimental Botany, 2021, 72, 3352-3366.	4.8	24
358	Expression of a novel-type small proline-rich protein gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells. Plant Molecular Biology, 1997, 34, 593-602.	3.9	23
359	A genetics screen highlights emerging roles for CPL3, RST1 and URT1 in RNA metabolism and silencing. Nature Plants, 2019, 5, 539-550.	9.3	23
360	Isolation of genes expressed in specific tissues of Arabidopsis thaliana by differential screening of a genomic library. Gene, 1988, 67, 1-11.	2.2	22

#	Article	IF	CITATIONS
361	Tolerance to low temperature and paraquat-mediated oxidative stress in two maize genotypes. Journal of Experimental Botany, 1999, 50, 523-532.	4.8	22
362	Using singleâ€plantâ€omics in the field to link maize genes to functions and phenotypes. Molecular Systems Biology, 2020, 16, e9667.	7.2	22
363	One-step purification and characterization of a lignin-specific O-methyltransferase from poplar. Gene, 1993, 133, 213-217.	2.2	21
364	Indomethacin-induced G1/S phase arrest of the plant cell cycle. FEBS Letters, 1999, 458, 349-353.	2.8	21
365	Measurement of plant growth in view of an integrative analysis of regulatory networks. Current Opinion in Plant Biology, 2015, 25, 90-97.	7.1	21
366	Strobilurins as growthâ€promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant, Cell and Environment, 2017, 40, 1748-1760.	5.7	21
367	High throughput RNase protection assay. Nucleic Acids Research, 1995, 23, 3359-3360.	14.5	20
368	Classical Anticytokinins Do Not Interact with Cytokinin Receptors but Inhibit Cyclin-dependent Kinases. Journal of Biological Chemistry, 2007, 282, 14356-14363.	3.4	20
369	A Population Genomics Study of the <i>Arabidopsis</i> Core Cell Cycle Genes Shows the Signature of Natural Selection. Plant Cell, 2009, 21, 2987-2998.	6.6	20
370	The role of HEXOKINASE1 in Arabidopsis leaf growth. Plant Molecular Biology, 2019, 99, 79-93.	3.9	20
371	Effects of sucrose supply on growth and paraquat tolerance of the late-flowering gi-3 mutant. Plant Growth Regulation, 1998, 26, 91-96.	3.4	19
372	Tuning the cell-cycle engine for improved plant performance. Current Opinion in Biotechnology, 2005, 16, 142-146.	6.6	19
373	CS ^{yellow} , a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants. Plant Physiology, 2018, 177, 447-464.	4.8	19
374	A forward genetics approach integrating genomeâ€wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (<i>Zea mays</i>). Plant Journal, 2021, 107, 1056-1071.	5.7	19
375	Cloning and molecular analysis of two new sesquiterpene cyclases from Artemisia annua L Plant Science, 2000, 158, 163-171.	3.6	18
376	INTRACELLULAR LOCALIZATION OF AN ENDOGENOUS CELLULOSE SYNTHASE OF MICRASTERIAS DENTICULATA (DESMIDIALES, CHLOROPHYTA) BY MEANS OF TRANSIENT GENETIC TRANSFORMATION1. Journal of Phycology, 2010, 46, 839-845.	2.3	18
377	A high-throughput bimolecular fluorescence complementation protein-protein interaction screen identifies functional <i>Arabidopsis</i> CDKA/B-CYCD4/5 complexes. Plant Signaling and Behavior, 2010, 5, 1276-1281.	2.4	18
378	Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8060-8069.	7.1	18

#	Article	IF	CITATIONS
379	Drought affects the rate and duration of organ growth but not inter-organ growth coordination. Plant Physiology, 2021, 186, 1336-1353.	4.8	18
380	Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment. Plant Molecular Biology, 2021, 106, 555-567.	3.9	18
381	The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biology, 2022, 22, 142.	3.6	18
382	Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 2022, 73, 3569-3583.	4.8	18
383	Plant expression vectors with the origin of replication of the W-type plasmid Sa. Plasmid, 1988, 19, 251-254.	1.4	17
384	The use of amoxicillin and ticarcillin in combination with a β-lactamase inhibitor as decontaminating agents in the Agrobacterium tumefaciens-mediated transformation of Artemisia annua L Journal of Biotechnology, 1996, 52, 89-95.	3.8	17
385	Increased leakiness of the tetracyclineâ€inducible Tripleâ€Op promoter in dividing cells renders it unsuitable for high inducible levels of a dominant negative CDC2aAt gene. Journal of Experimental Botany, 2000, 51, 1647-1653.	4.8	17
386	Natural Variation of Molecular and Morphological Gibberellin Responses. Plant Physiology, 2017, 173, 703-714.	4.8	16
387	CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Molecular Biology, 2022, 108, 257-275.	3.9	16
388	Meristem, cell division and S phase-dependent activity of wheat histone H4 promoter in transgenic maize plants. Plant Science, 1999, 143, 35-44.	3.6	15
389	The Growing Family of Plant Cyclin-Dependent Kinases with Multiple Functions in Cellular and Developmental Regulation. , 0, , 1-30.		15
390	AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC Plant Biology, 2015, 15, 270.	3.6	15
391	Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions. Plant Physiology, 2021, 186, 1171-1185.	4.8	15
392	Prospects to improve the nutritional quality of crops. Food and Energy Security, 2022, 11, e327.	4.3	15
393	Regulation of Cell Division in Arabidopsis. Critical Reviews in Plant Sciences, 1996, 15, 97-112.	5.7	15
394	Optimized Transformation and Gene Editing of the B104 Public Maize Inbred by Improved Tissue Culture and Use of Morphogenic Regulators. Frontiers in Plant Science, 2022, 13, 883847.	3.6	15
395	Cell Cycle Control inArabidopsis. Annals of Botany, 1996, 78, 283-288.	2.9	14
396	The fas locus of the phytopathogen Rhodococcus fascians affects mitosis of tobacco BY-2 cells. FEBS Letters, 2001, 492, 127-132.	2.8	14

#	Article	IF	CITATIONS
397	A technology platform for the fast production of monoclonal recombinant antibodies against plant proteins and peptides. Journal of Immunological Methods, 2004, 294, 181-187.	1.4	14
398	The Future of Field Trials in Europe: Establishing a Network Beyond Boundaries. Trends in Plant Science, 2016, 21, 92-95.	8.8	14
399	The PEAPOD Pathway and Its Potential To Improve Crop Yield. Trends in Plant Science, 2021, 26, 220-236.	8.8	14
400	Interactive database of genome editing applications in crops and future policy making in the European Union. Trends in Plant Science, 2022, 27, 746-748.	8.8	14
401	From laboratory to field: yield stability and shade avoidance genes are massively differentially expressed in the field. Plant Biotechnology Journal, 2020, 18, 1112-1114.	8.3	13
402	How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone. New Phytologist, 2020, 225, 2513-2525.	7.3	13
403	Biotechnology for Tomorrow's World: Scenarios to Guide Directions for Future Innovation. Trends in Biotechnology, 2021, 39, 438-444.	9.3	13
404	Increasing yield on dry fields: molecular pathways with growing potential. Plant Journal, 2022, 109, 323-341.	5.7	13
405	β-Glucuronidase activity in transgenic and non-transgenic tobacco cells: specific elimination of plant inhibitors and minimization of endogenous GUS background. Plant Science, 1996, 113, 209-219.	3.6	12
406	CEF, a Sec24 homologue of Arabidopsis thaliana, enhances the survival of yeast under oxidative stress conditions1. Journal of Experimental Botany, 2000, 51, 1761-1762.	4.8	12
407	Solution NMR Study of the Monomeric Form of p13 Protein Sheds Light on the Hinge Region Determining the Affinity for a Phosphorylated Substrate. Journal of Biological Chemistry, 2002, 277, 12375-12381.	3.4	12
408	Why should we study the plant cell cycle?. Journal of Experimental Botany, 2003, 54, 1125-1126.	4.8	12
409	Growth rate rather than growth duration drives growth heterosis in maize B104 hybrids. Plant, Cell and Environment, 2018, 41, 374-382.	5.7	12
410	SIKIX8 and SIKIX9 are negative regulators of leaf and fruit growth in tomato. Plant Physiology, 2022, 188, 382-396.	4.8	12
411	Functional Genomic Approaches to Study and Engineer Secondary Metabolism in Plant Cell Cultures. , 0, , 291-300.		12
412	Approaches and determinants to sustainably improve crop production. Food and Energy Security, 2023, 12, .	4.3	12
413	Processing of a chimeric protein in chloroplasts is different in transgenic maize and tobacco plants. Plant Molecular Biology, 1998, 38, 491-496.	3.9	11
414	A bioanalytical method for the proteome wide display and analysis of protein complexes from whole plant cell lysates. Proteomics, 2009, 9, 598-609.	2.2	11

#	Article	IF	CITATIONS
415	The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.	6.6	11
416	Turgorâ€ŧime controls grass leaf elongation rate and duration under drought stress. Plant, Cell and Environment, 2021, 44, 1361-1378.	5.7	11
417	Cloning of a novel Arabidopsis thaliana RGA-like gene, a putative member of the VHIID-domain transcription factor family. Journal of Experimental Botany, 1998, 49, 1609-1610.	4.8	10
418	The role of scientists in policy making for more sustainable agriculture. Current Biology, 2021, 31, R218-R220.	3.9	10
419	Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. Plant Physiology, 2021, 185, 228-239.	4.8	10
420	Mini-Review: Transgenerational CRISPR/Cas9 Gene Editing in Plants. Frontiers in Genome Editing, 2022, 4, 825042.	5.2	10
421	Non-destructive analysis of plant physiological traits using hyperspectral imaging: A case study on drought stress. Computers and Electronics in Agriculture, 2022, 195, 106806.	7.7	10
422	CDK Inhibitors. , 0, , 62-86.		9
423	Hide and seek: uncloaking the vegetative shoot apex of Arabidopsis thaliana. Plant Journal, 2010, 63, 541-548.	5.7	9
424	SAMBA controls cell division rate during maize development. Plant Physiology, 2022, 188, 411-424.	4.8	9
425	CDK-related protein kinases in plants. , 2000, , 63-76.		8
426	An integrated network of Arabidopsis growth regulators and its use for gene prioritization. Scientific Reports, 2015, 5, 17617.	3.3	8
427	Cloning of a cDNA encoding a developmentally regulated 22 kDa polypeptide from tobacco leaf plasma membrane. IUBMB Life, 1996, 40, 469-477.	3.4	7
428	The Arabidopsis Locus RCB Mediates Upstream Regulation of Mitotic Gene Expression. Plant Physiology, 2003, 133, 1862-1872.	4.8	7
429	Hormonal Regulation of Cell Cycle Progression and its Role in Development. , 0, , 311-334.		7
430	CHARACTERIZATION OF A RABE (RAS GENE FROM RAT BRAIN E) GTPASE EXPRESSED DURING MORPHOGENESIS IN THE UNICELLULAR GREEN ALGA <i>MICRASTERIAS DENTICULATA</i> (ZYGNEMATOPHYCEAE, STREPTOPHYTA) ¹ . Journal of Phycology, 2012, 48, 682-692.	2.3	7
431	The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining. Current Plant Biology, 2015, 2, 1-11.	4.7	7
432	Modulation of the DA1 pathway in maize shows that translatability of information from Arabidopsis to crops is complex. Plant Science, 2022, 321, 111295.	3.6	7

#	Article	IF	CITATIONS
433	Tobacco cultures transformed with cyclin-promoter-gus constructs reveal a discrepancy between gus mRNA levels and GUS protein activity upon leaving the stationary state. Plant Science, 1999, 141, 67-71.	3.6	6
434	Recombinant Production of the p10CKS1AtProtein fromArabidopsis thalianaand13C and15N Double-Isotopic Enrichment for NMR Studies. Protein Expression and Purification, 1999, 16, 144-151.	1.3	5
435	Crystallization and preliminary X-ray crystallographic analysis of NADPH: azodicarbonyl/quinone oxidoreductase, a plant ζ-crystallin. BBA - Proteins and Proteomics, 2000, 1480, 374-376.	2.1	5
436	Cell Cycle and Environmental Stresses. , 0, , 335-355.		5
437	A Local Maximum in Gibberellin Levels Regulates Maize Leaf Growth by Spatial Control of Cell Division. Current Biology, 2012, 22, 1266.	3.9	5
438	Thirty years of transgenic plants. Nature, 2013, 497, 40-40.	27.8	5
439	Modeling effects of illumination and plant geometry on leaf reflectance spectra in close-range hyperspectral imaging. , 2016, , .		5
440	A Guide to CORNET for the Construction of Coexpression and Protein–Protein Interaction Networks. Methods in Molecular Biology, 2013, 1011, 327-343.	0.9	4
441	Development of a novel and rapid phenotype-based screening method to assess rice seedling growth. Plant Methods, 2020, 16, 139.	4.3	4
442	Improvements of the Molecular Toolbox for Cell Cycle Studies in Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, 2004, , 7-23.	0.2	4
443	Letter to the editor: sequence-specific 1H, 13C and 15N chemical shift backbone NMR assignment and secondary structure of the Arabidopsis thaliana PIN1At protein. Journal of Biomolecular NMR, 2000, 17, 271-272.	2.8	3
444	Auxin Fuels the Cell Cycle Engine During Lateral Root Initiation. , 0, , 187-202.		3
445	Robust plane-based calibration for linear cameras. , 2017, , .		3
446	Detection of Plant Responses to Drought using Close-Range Hyperspectral Imaging in a High-Throughput Phenotyping Platform. , 2018, , .		2
447	The translatability of genetic networks from model to crop species: lessons from the past and perspectives for the future. New Phytologist, 0, , .	7.3	2
448	T-DNA Controlled and Plant Specific Metabolism inAgrobacterium tumefaciensTransformed Tobacco and Soybean Tissues. Bulletin De La Société Botanique De France Actualités Botaniques, 1988, 135, 63-71.	0.0	1
449	Editorial overview: Cell signalling and gene regulation: The many layers of plant signalling. Current Opinion in Plant Biology, 2016, 33, iv-vi.	7.1	1
450	Functional analysis of Arabidopsis and maize transgenic lines overexpressing the ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7. International Journal of Developmental Biology, 2019, 63, 45-55.	0.6	1

#	Article	IF	CITATIONS
451	Silencing approach using Poly (ADP-ribose) polymerase gene to improve drought stress tolerance in maize. Afrika Focus, 2010, 23, 61-64.	0.2	1
452	Cell cycle control in <i>Arabidopsis thaliana</i> . Acta Botanica Gallica, 1993, 140, 583-590.	0.9	0
453	Analysis of tiling array expression studies with flexible designs in Bioconductor (waveTiling). BMC Bioinformatics, 2012, 13, 234.	2.6	0
454	A novel tracing method for the segmentation of cell wall networks. , 2013, 2013, 5433-6.		0
455	Rotational fusion and extended field of depth for a single cell layer in DIC microscopic images. , 2015, ,		0
456	Transgenic Plants Expressing Tolerance Toward Oxidative Stress. , 2002, , .		0
457	Secondary Metabolites in the Post-Genomic Era. , 2003, , 465-468.		Ο
458	Integrating Transcriptional and Metabolic Profiling to Unravel Secondary Metabolite Biosynthesis in Plants. , 2007, , 135-138.		0