Hai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936331/publications.pdf Version: 2024-02-01

ΗΛΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Dual-channel D-(Ï€-A)2 phenoxazine/phenothiazine dyes with an auxiliary N-alkoxy benzoic acid anchor for fabrication of dye-sensitized solar cells. Solar Energy, 2021, 225, 173-183.	6.1	9
2	Theoretical and photovoltaic investigations of 1,3,5-triazine-based photosensitizers achieving highly efficient DSSCs. Synthetic Metals, 2021, 280, 116882.	3.9	7
3	An ethyl thioglycolate-based chemosensor: Spectrophotometric detection of Fe3+ and fluorometric detection of Hg2+ with high selectivity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119955.	3.9	4
4	Phenothiazine (or phenoxazine) based (D–ï€â€"A)-L2-(A–ï€â€"D–ï€â€"A)2-type organic dyes with five anch for efficient dye-sensitized solar cells. Solar Energy, 2020, 212, 220-230.	ors 6.1	17
5	Optimize the rigid auxiliary groups on the donor to achieve self-inhibiting aggregation of the sensitizers. Solar Energy, 2020, 204, 330-336.	6.1	5
6	A simple indolo[2,3-a]carbazole based colorimetric chemosensor for simultaneous detection of Cu2+ and Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 234, 118236.	3.9	19
7	Linear donor with multiple flexible chains for dye-sensitized solar cells: Inhibition of dye aggregation and charge recombination. Synthetic Metals, 2020, 267, 116473.	3.9	5
8	Molecular engineering of metal-free organic sensitizers with polycyclic benzenoid hydrocarbon donor for DSSC applications: The effect of the conjugate mode. Solar Energy, 2020, 198, 239-246.	6.1	21
9	D–π–A–π–D type solvatochromic fluorescence probes based on triphenylamine: Synthesis, photophysical properties and application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 238, 118384.	3.9	16
10	Investigation of the photovoltaic performance of dye-sensitized solar cells utilizing 9,9'-bianthracene-based dyes as a co-sensitizer. Synthetic Metals, 2020, 264, 116385.	3.9	7
11	Novel metal-free organic dyes containing linear planar 11,12-dihydroindolo[2,3-a]carbazole donor for dye-sensitized solar cells: Effects of π spacer and alkyl chain. Dyes and Pigments, 2019, 164, 213-221.	3.7	30
12	A new thiosemicarbazone fluorescent probe based on 9,9′-bianthracene for Hg2+ and Ag+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 34-40.	3.9	31
13	Novel rod-shaped organic sensitizers for liquid and quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2019, 295, 934-941.	5.2	24
14	Synthesis of novel sensitizers with a linear conjugated di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole unit for dye-sensitized solar cells. Dyes and Pigments, 2019, 162, 89-96.	3.7	21
15	(Dâ~'Ï€â~'A)3â^'Type metal-free organic dye for dye-sensitized solar cells application. Dyes and Pigments, 2018, 158, 240-248.	3.7	22
16	Effects of various heteroatom donor species on the photophysical, electrochemical and photovoltaic performance of dye-sensitized solar cells. Electrochimica Acta, 2018, 290, 303-311.	5.2	13
17	Dye-sensitized solar cells based on (Dâ^'Ĭ€â^A)3L2 phenothiazine dyes containing auxiliary donors and flexible linkers with different length of carbon chain. Electrochimica Acta, 2018, 283, 1732-1741.	5.2	22
18	Effect of structural optimization on the photovoltaic performance of dithieno[3,2-b:2′,3′-d]pyrrole-based dye-sensitized solar cells. RSC Advances, 2017, 7, 35598-35607.	3.6	8

Hai Zhang

#	Article	IF	CITATIONS
19	Novel dithieno[3,2-b:2′,3′-d]pyrrole-based organic dyes with high molar extinction coefficient for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2071-2081.	2.6	58
20	Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs. Dyes and Pigments, 2013, 99, 74-81.	3.7	35