Natalia Stopikowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936321/publications.pdf

Version: 2024-02-01

1040056 1199594 12 602 9 12 citations g-index h-index papers 12 12 12 545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF ₄ :Yb ³⁺ – Er ³⁺ @SiO ₂ Temperature Sensor. ACS Applied Materials & Diterfaces, 2019, 11, 13389-13396.	8.0	178
2	Luminescent Nanothermometer Operating at Very High Temperatureâ€"Sensing up to 1000 K with Upconverting Nanoparticles (Yb ³⁺ /Tm ³⁺). ACS Applied Materials & Interfaces, 2020, 12, 43933-43941.	8.0	130
3	Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce ³⁺ -Doped Fluorapatite—High-Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4131-4138.	8.0	88
4	Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. Journal of Alloys and Compounds, 2022, 890, 161830.	5 . 5	47
5	UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Transactions, 2020, 49, 2129-2137.	3.3	39
6	Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. Journal of Luminescence, 2020, 228, 117643.	3.1	32
7	Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power. Nanoscale, 2021, 13, 14139-14146.	5.6	31
8	Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods – Up-conversion luminescence tuning and morphology transformation after NIR laser irradiation. Journal of Alloys and Compounds, 2018, 762, 621-630.	5.5	25
9	Luminescent-plasmonic effects in GdPO 4 :Eu 3+ nanorods covered with silver nanoparticles. Journal of Luminescence, 2017, 188, 24-30.	3.1	20
10	Surface Modification of Luminescent Ln ^{III} Fluoride Core–Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and <i>in Vitro</i> Hemocompatibility Studies. ChemMedChem, 2020, 15, 1490-1496.	3.2	5
11	Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles. Nanomaterials, 2022, 12, 1926.	4.1	4
12	Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation. Nanomaterials, 2022, 12, 799.	4.1	3