Sibylle von Vietinghoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936203/publications.pdf

Version: 2024-02-01

46 papers 1,464 citations

331538 21 h-index 330025 37 g-index

50 all docs 50 docs citations

50 times ranked

2762 citing authors

#	Article	IF	CITATIONS
1	Homeostatic Regulation of Blood Neutrophil Counts. Journal of Immunology, 2008, 181, 5183-5188.	0.4	244
2	Dynamic T cell–APC interactions sustain chronic inflammation in atherosclerosis. Journal of Clinical Investigation, 2012, 122, 3114-3126.	3.9	205
3	NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood, 2007, 109, 4487-4493.	0.6	116
4	IL-17A Controls IL-17F Production and Maintains Blood Neutrophil Counts in Mice. Journal of Immunology, 2009, 183, 865-873.	0.4	84
5	Macrophage density in early surveillance biopsies predicts future renal transplant function. Kidney International, 2017, 92, 479-489.	2.6	53
6	Interleukin 17 in vascular inflammation. Cytokine and Growth Factor Reviews, 2010, 21, 463-469.	3.2	52
7	Interleukin 17 Receptor A Modulates Monocyte Subsets and Macrophage Generation In Vivo. PLoS ONE, 2014, 9, e85461.	1.1	46
8	CX3CL1–CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney International, 2019, 95, 1405-1417.	2.6	38
9	Mycophenolate Mofetil Decreases Atherosclerotic Lesion Size by Depression of Aortic T-Lymphocyte and Interleukin-17–Mediated Macrophage Accumulation. Journal of the American College of Cardiology, 2011, 57, 2194-2204.	1.2	35
10	Endothelialâ€toâ€mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB Journal, 2019, 33, 2278-2289.	0.2	35
11	Increased Atherosclerotic Lesion Formation and Vascular Leukocyte Accumulation in Renal Impairment Are Mediated by Interleukin-17A. Circulation Research, 2013, 113, 965-974.	2.0	32
12	Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney International, 2014, 85, 1357-1368.	2.6	32
13	Interleukin 17A in atherosclerosis – Regulation and pathophysiologic effector function. Cytokine, 2019, 122, 154089.	1.4	32
14	Neutrophil surface presentation of the anti-neutrophil cytoplasmic antibody-antigen proteinase 3 depends on N-terminal processing. Clinical and Experimental Immunology, 2008, 152, 508-516.	1.1	30
15	SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules, 2020, 10, 1573.	1.8	30
16	Defective Regulation of CXCR2 Facilitates Neutrophil Release from Bone Marrow Causing Spontaneous Inflammation in Severely NF-κB–Deficient Mice. Journal of Immunology, 2010, 185, 670-678.	0.4	29
17	Multiparametric Functional MRI: Non-Invasive Imaging of Inflammation and Edema Formation after Kidney Transplantation in Mice. PLoS ONE, 2016, 11, e0162705.	1.1	29
18	Mycophenolic acid suppresses granulopoiesis by inhibition of interleukin-17 production. Kidney International, 2010, 78, 79-88.	2.6	28

#	Article	IF	Citations
19	Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell and Tissue Research, 2021, 385, 335-344.	1.5	28
20	T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment. Journal of the American Society of Nephrology: JASN, 2016, 27, 1753-1764.	3.0	26
21	Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1–CX3CL1 interaction. Cardiovascular Research, 2021, 117, 1510-1522.	1.8	24
22	Extracellular vesicles as mediators of vascular inflammation in kidney disease. World Journal of Nephrology, 2016, 5, 125.	0.8	24
23	Aggravated Atherosclerosis and Vascular Inflammation With Reduced Kidney Function Depend on Interleukin-17 Receptor A and Are Normalized by Inhibition of Interleukin-17A. JACC Basic To Translational Science, 2018, 3, 54-66.	1.9	23
24	Induction of ferroptosis selectively eliminates senescent tubular cells. American Journal of Transplantation, 2022, 22, 2158-2168.	2.6	20
25	Ischemia Reperfusion Injury Triggers CXCL13 Release and B-Cell Recruitment After Allogenic Kidney Transplantation. Frontiers in Immunology, 2020, 11, 1204.	2.2	19
26	Surface receptor <scp>CD</scp> 177/ <scp>NB</scp> 1 does not confer a recruitment advantage to neutrophilic granulocytes during human peritonitis. European Journal of Haematology, 2013, 90, 436-437.	1.1	16
27	Chemokine CXCL13 as a New Systemic Biomarker for B-Cell Involvement in Acute T Cell-Mediated Kidney Allograft Rejection. International Journal of Molecular Sciences, 2019, 20, 2552.	1.8	16
28	Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nature Communications, 2022, 13, 2022.	5.8	16
29	Renal transplant recipients receiving loop diuretic therapy have increased urinary tract infection rate and altered medullary macrophage polarization marker expression. Kidney International, 2018, 94, 993-1001.	2.6	15
30	Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha. Nephrology Dialysis Transplantation, 2019, 34, 947-960.	0.4	14
31	Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 <i>in vivo</i> . Clinical and Experimental Immunology, 2019, 199, 97-108.	1.1	11
32	Peritoneal dialysateâ€range hypertonic glucose promotes Tâ€cell ILâ€17 production that induces mesothelial inflammation. European Journal of Immunology, 2021, 51, 354-367.	1.6	11
33	Advances in the pharmacological management of bacterial peritonitis. Expert Opinion on Pharmacotherapy, 2021, 22, 1567-1578.	0.9	10
34	Inflammation in atherosclerosis: A key role for cytokines. Cytokine, 2019, 122, 154819.	1.4	9
35	A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Scientific Reports, 2021, 11, 13251.	1.6	8
36	Longâ€term B cell depletion associates with regeneration of kidney function. Immunity, Inflammation and Disease, 2021, 9, 1479-1488.	1.3	5

#	Article	IF	CITATIONS
37	Myeloid CCR2 Promotes Atherosclerosis after AKI. Journal of the American Society of Nephrology: JASN, 2022, 33, 1487-1500.	3.0	5
38	Single cell versus single nucleus: transcriptome differences in the murine kidney after ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2022, 323, F171-F181.	1.3	5
39	Azathioprine hypersensitivity syndrome in anti-myeloperoxidase anti-neutrophil cytoplasmic antibody-associated vasculitis. CKJ: Clinical Kidney Journal, 2019, 12, 89-91.	1.4	2
40	Surface-bound bovine serum albumin carrier protein as present in recombinant cytokine preparations amplifies T helper 17 cell polarization. Scientific Reports, 2016, 6, 36598.	1.6	1
41	Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. European Journal of Immunology, 2022, 52, 1258-1272.	1.6	1
42	A kidneyâ€shaped polycystic mass on the back of a hemodialysis patient. Clinical Case Reports (discontinued), 2016, 4, 840-841.	0.2	0
43	FP470SGLT2 INHIBITION BY INTRAPERITONEAL DAPAGLIFLOZIN AMELIORATES IN VIVO PERITONEAL FIBROSIS AND ULTRAFILTRATION FAILURE. Nephrology Dialysis Transplantation, 2018, 33, i195-i195.	0.4	O
44	Letter to the Editor. Journal of Leukocyte Biology, 2020, 108, 1707-1707.	1.5	0
45	P1608CXCL13 IS STRONGLY INDUCED BY RENAL ISCHEMIA REPERFUSION INJURY AND CORRELATES WITH SEVERITY OF RENAL INFLAMMATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	O
46	More than a Marker: Arginase-1 in Kidney Repair. Journal of the American Society of Nephrology: JASN, 2022, 33, 1051-1053.	3.0	O