
Joana L Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3936081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterologous production of chondroitin. Biotechnology Reports (Amsterdam, Netherlands), 2022, 33, e00710.	4.4	9
2	Identification of novel aptamers targeting cathepsin B-overexpressing prostate cancer cells. Molecular Systems Design and Engineering, 2022, 7, 637-650.	3.4	4
3	Perspectives on the design of microbial cell factories to produce prenylflavonoids. International Journal of Food Microbiology, 2022, 367, 109588.	4.7	10
4	Curcumin biosynthesis from ferulic acid by engineered <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2022, 17, e2100400.	3.5	9
5	One-step production of a novel prebiotic mixture using Zymomonas mobilis ZM4. Biochemical Engineering Journal, 2022, 183, 108443.	3.6	1
6	Heterologous Production of Acrylic Acid: Current Challenges and Perspectives. SynBio, 2022, 1, 3-32.	3.0	8
7	Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 2022, 106, 4617-4626.	3.6	5
8	Biosynthesis and heterologous production of furanocoumarins: perspectives and current challenges. Natural Product Reports, 2021, 38, 869-879.	10.3	21
9	A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli. PLoS Computational Biology, 2021, 17, e1008704.	3.2	10
10	Epilactose Biosynthesis Using Recombinant Cellobiose 2-Epimerase Produced by <i>Saccharomyces cerevisiae</i> . ACS Food Science & Technology, 2021, 1, 1578-1584.	2.7	4
11	Modification of PET surfaces with gum Arabic towards its bacterial anti-adhesiveness using an experimental factorial design approach. Materials Today Communications, 2021, 28, 102684.	1.9	3
12	CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life, 2021, 11, 13.	2.4	23
13	Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. Biosensors, 2021, 11, 418.	4.7	19
14	Improved method for the extraction of high-quality DNA from lignocellulosic compost samples for metagenomic studies. Applied Microbiology and Biotechnology, 2021, 105, 8881-8893.	3.6	9
15	Cloning, Expression and Characterization of UDP-Glucose Dehydrogenases. Life, 2021, 11, 1201.	2.4	5
16	Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. Bioresources and Bioprocessing, 2021, 8, .	4.2	10
17	Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life, 2020, 10, 56.	2.4	24
18	A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2020, 8, 59.	4.1	41

Joana L Rodrigues

#	Article	IF	CITATIONS
19	Biotech Green Approaches to Unravel the Potential of Residues into Valuable Products. Nanotechnology in the Life Sciences, 2020, , 97-150.	0.6	3
20	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
21	Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Trends in Biotechnology, 2018, 36, 186-198.	9.3	38
22	Hydroxycinnamic acids and curcumin production in engineered Escherichia coli using heat shock promoters. Biochemical Engineering Journal, 2017, 125, 41-49.	3.6	35
23	Optimization of fermentation conditions for the production of curcumin by engineered <i>Escherichia coli</i> . Journal of the Royal Society Interface, 2017, 14, 20170470.	3.4	39
24	Synthetic Biology. , 2017, , 239-269.		3
25	Synthetic biology strategies towards the development ofÂnewÂbioinspired technologies for medical applications. , 2017, , 451-497.		5
26	Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme and Microbial Technology, 2015, 71, 36-44.	3.2	66
27	Heterologous Production of Curcuminoids. Microbiology and Molecular Biology Reviews, 2015, 79, 39-60.	6.6	68
28	Production of curcuminoids from tyrosine by a metabolically engineered <i>Escherichia coli</i> using caffeic acid as an intermediate. Biotechnology Journal, 2015, 10, 599-609.	3.5	47
29	Selection of Escherichia coli heat shock promoters toward their application as stress probes. Journal of Biotechnology, 2014, 188, 61-71.	3.8	18
30	Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: A comparative study. Geoderma, 2011, 164, 232-237.	5.1	68