
Olga A Stasyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935975/publications.pdf Version: 2024-02-01

ΟΙ CA Δ STASVILK

#	Article	IF	CITATIONS
1	Effect of Diamine Bridge on Reactivity of Tetradentate ONNO Nickel(II) Complexes. ChemPhysChem, 2022, 23, .	1.0	0
2	Nitrogen-doped molecular bowls as electron donors in photoinduced electron transfer reactions. Nanoscale Advances, 2022, 4, 2180-2188.	2.2	6
3	The Hunter Falls Prey: Photoinduced Oxidation of C ₆₀ in Inclusion Complex with Perfluorocycloparaphenylene. ChemPhysChem, 2022, 23, .	1.0	9
4	Aromaticity of nucleic acid bases. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1509.	6.2	7
5	Photoinduced electron transfer in nano-Saturn complexes of fullerene. Physical Chemistry Chemical Physics, 2021, 23, 2126-2133.	1.3	8
6	Photoinduced electron transfer in mechanically interlocked suit[3]ane systems. Journal of Materials Chemistry C, 2021, 9, 9436-9445.	2.7	9
7	How Do Defects in Carbon Nanostructures Regulate the Photoinduced Electron Transfer Processes? The Case of Phenine Nanotubes. ChemPhysChem, 2021, 22, 1178-1186.	1.0	7
8	[10]CPPâ€Based Inclusion Complexes of Charged Fulleropyrrolidines. Effect of the Charge Location on the Photoinduced Electron Transfer. Chemistry - A European Journal, 2021, 27, 8737-8744.	1.7	10
9	Photoinduced electron transfer in non-covalent complexes of C60 and phosphangulene oxide derivatives. Dalton Transactions, 2021, 50, 16214-16222.	1.6	3
10	Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chemical Communications, 2020, 56, 352-355.	2.2	78
11	Photoinduced electron transfer in nanotube⊃C ₇₀ inclusion complexes: phenine <i>vs</i> . nanographene nanotubes. Chemical Communications, 2020, 56, 12624-12627.	2.2	16
12	Electron Transfer in a Li ⁺ -Doped Zn-Porphyrin–[10]CPP⊃Fullerene Junction and Charge-Separated Bands with Opposite Response to Polar Environments. Journal of Physical Chemistry B, 2020, 124, 9095-9102.	1.2	16
13	Covalent Functionalization of Single-Walled Carbon Nanotubes by the Bingel Reaction for Building Charge-Transfer Complexes. Journal of Organic Chemistry, 2020, 85, 11721-11731.	1.7	6
14	Triquinoline―versus Fullereneâ€Based Cycloparaphenylene Ionic Complexes: Comparison of Photoinduced Chargeâ€Shift Reactions. Chemistry - A European Journal, 2020, 26, 10896-10902.	1.7	10
15	Substituted adenine quartets: interplay between substituent effect, hydrogen bonding, and aromaticity. RSC Advances, 2020, 10, 23350-23358.	1.7	6
16	Effect of Alkali Metal Cations on Length and Strength of Hydrogen Bonds in DNA Base Pairs. ChemPhysChem, 2020, 21, 2112-2126.	1.0	15
17	(Invited) Reactivity of Li+@C60@C240 and Photoinduced Charge Shift in Li+ Doped Giant Nested Fullerenes. ECS Meeting Abstracts, 2020, MA2020-01, 809-809.	0.0	0
18	Hypsochromic solvent shift of the charge separation band in ionic donor–acceptor Li ⁺ @C ₆₀ âŠ,[10]CPP. Chemical Communications, 2019, 55, 11195-11198.	2.2	23

Olga A Stasyuk

#	Article	IF	CITATIONS
19	Photoinduced Charge Shift in Li ⁺ -Doped Giant Nested Fullerenes. Journal of Physical Chemistry C, 2019, 123, 16525-16532.	1.5	13
20	Innenrücktitelbild: Allâ€Fullerene Electron Donor–Acceptor Conjugates (Angew. Chem. 21/2019). Angewandte Chemie, 2019, 131, 7217-7217.	1.6	1
21	Allâ€Fullerene Electron Donor–Acceptor Conjugates. Angewandte Chemie - International Edition, 2019, 58, 6932-6937.	7.2	35
22	Allâ€Fullerene Electron Donor–Acceptor Conjugates. Angewandte Chemie, 2019, 131, 7006-7011.	1.6	13
23	Photoinduced electron transfer and unusual environmental effects in fullerene–Zn-porphyrin–BODIPY triads. Physical Chemistry Chemical Physics, 2019, 21, 25098-25107.	1.3	22
24	Peculiar Photoinduced Electron Transfer in Porphyrin–Fullerene Akamptisomers. Chemistry - A European Journal, 2019, 25, 2577-2585.	1.7	9
25	(Invited) Photoinduced Charge Separation in Several Dyads Involving Fullerenes. ECS Meeting Abstracts, 2019, , .	0.0	Ο
26	Stereocontrolled Photoinduced Electron Transfer in Metalâ€Fullerene Hybrids. Chemistry - A European Journal, 2018, 24, 13020-13025.	1.7	17
27	Comparison of the DFT-SAPT and Canonical EDA Schemes for the Energy Decomposition of Various Types of Noncovalent Interactions. Journal of Chemical Theory and Computation, 2018, 14, 3440-3450.	2.3	74
28	Towards physical interpretation of substituent effects: the case of N- and C3-substituted pyrrole derivatives. Structural Chemistry, 2017, 28, 1223-1227.	1.0	3
29	Noncovalent Interactions in Specific Recognition Motifs of Protein–DNA Complexes. Journal of Chemical Theory and Computation, 2017, 13, 877-885.	2.3	22
30	Effect of Intra- and Intermolecular Interactions on the Properties of para-Substituted Nitrobenzene Derivatives. Crystals, 2016, 6, 29.	1.0	19
31	Calculating the Aromaticity of Heterocycles. Advances in Heterocyclic Chemistry, 2016, , 301-327.	0.9	16
32	Interactions of polar hydrogen bond donor solvents with ions: a theoretical study. Structural Chemistry, 2016, 27, 1279-1289.	1.0	6
33	How amino and nitro substituents direct electrophilic aromatic substitution in benzene: an explanation with Kohn–Sham molecular orbital theory and Voronoi deformation density analysis. Physical Chemistry Chemical Physics, 2016, 18, 11624-11633.	1.3	46
34	New Insight into the Nature of Bonding in the Dimers of Lappert's Stannylene and Its Ge Analogs: A Quantum Mechanical Study. Journal of Chemical Theory and Computation, 2016, 12, 1696-1704.	2.3	16
35	Towards physical interpretation of substituent effects: the case of meta- and para-substituted anilines. Physical Chemistry Chemical Physics, 2016, 18, 11711-11721.	1.3	43
36	Aromaticity of H-bonded and metal complexes of guanine tautomers. Structural Chemistry, 2016, 27, 111-118.	1.0	10

Olga A Stasyuk

#	Article	IF	CITATIONS
37	Substituent Effects in Heterocyclic Systems. Advances in Heterocyclic Chemistry, 2015, 116, 137-192.	0.9	9
38	Theoretical study of electron-attracting ability of the nitro group: classical and reverse substituent effects. Structural Chemistry, 2015, 26, 905-913.	1.0	39
39	Why 1,2-quinone derivatives are more stable than their 2,3-analogues?. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	16
40	Metal Complexation and H-bonding Effects on Electronic Structure of Cytosine Studied in the Gas Phase. Croatica Chemica Acta, 2014, 87, 335-342.	0.1	7
41	Aromaticity from the Viewpoint of Molecular Geometry: Application to Planar Systems. Chemical Reviews, 2014, 114, 6383-6422.	23.0	439
42	Tautomerisation of thymine acts against the Hückel 4 <i>N</i> + 2 rule. The effect of metal ions and H-bond complexations on the electronic structure of thymine. Organic and Biomolecular Chemistry, 2014, 12, 6476-6483.	1.5	22
43	Effect of H-bonding and complexation with metal ions on the π-electron structure of adenine tautomers. Organic and Biomolecular Chemistry, 2014, 12, 456-466.	1.5	21
44	Effect of the H-Bonding on Aromaticity of Purine Tautomers. Journal of Organic Chemistry, 2012, 77, 4035-4045.	1.7	32