Xiaobo Lu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3935834/xiaobo-lu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68
papers
6,490
citations
h-index
71
g-index
71
ext. papers
7,936
ext. citations
13.2
avg, IF
L-index

#	Paper	IF	Citations
68	Spatially indirect intervalley excitons in bilayer WSe2. <i>Physical Review B</i> , 2022 , 105,	3.3	2
67	Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply <i>Nature Communications</i> , 2022 , 13, 1007	17.4	3
66	Competing Zero-Field Chern Insulators in Superconducting Twisted Bilayer Graphene. <i>Physical Review Letters</i> , 2021 , 127, 197701	7.4	11
65	Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. <i>Nature Physics</i> , 2021 , 17, 710-714	16.2	34
64	Ultrasensitive Calorimetric Measurements of the Electronic Heat Capacity of Graphene. <i>Nano Letters</i> , 2021 , 21, 5330-5337	11.5	1
63	Signatures of Wigner crystal of electrons in a monolayer semiconductor. <i>Nature</i> , 2021 , 595, 53-57	50.4	20
62	Observation of flat bands in twisted bilayer graphene. <i>Nature Physics</i> , 2021 , 17, 189-193	16.2	45
61	Measuring local moir[lattice heterogeneity of twisted bilayer graphene. <i>Physical Review Research</i> , 2021 , 3,	3.9	6
60	Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
59	Twist-Angle-Dependent Ultrafast Charge Transfer in MoS-Graphene van der Waals Heterostructures. <i>Nano Letters</i> , 2021 , 21, 8051-8057	11.5	8
58	High-order minibands and interband Landau level reconstruction in graphene moir uperlattices. <i>Physical Review B</i> , 2020 , 102,	3.3	1
57	Untying the insulating and superconducting orders in magic-angle graphene. <i>Nature</i> , 2020 , 583, 375-37	8 50.4	136
56	Nanoscale Imaging and Control of Hexagonal Boron Nitride Single Photon Emitters by a Resonant Nanoantenna. <i>Nano Letters</i> , 2020 , 20, 1992-1999	11.5	13
55	Precise control of the interlayer twist angle in large scale MoS homostructures. <i>Nature Communications</i> , 2020 , 11, 2153	17.4	55
54	Vertical Integration of 2D Building Blocks for All-2D Electronics. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000550	6.4	10
53	Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. <i>Nature Electronics</i> , 2020 , 3, 711-717	28.4	90
52	Terahertz Photogalvanics in Twisted Bilayer Graphene Close to the Second Magic Angle. <i>Nano Letters</i> , 2020 , 20, 7152-7158	11.5	7

(2017-2020)

51	Magic-Angle Bilayer Graphene Nanocalorimeters: Toward Broadband, Energy-Resolving Single Photon Detection. <i>Nano Letters</i> , 2020 , 20, 3459-3464	11.5	13
50	Current-driven magnetization switching in a van der Waals ferromagnet FeGeTe. <i>Science Advances</i> , 2019 , 5, eaaw8904	14.3	119
49	Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. <i>Physical Review B</i> , 2019 , 99,	3.3	6
48	Nonvolatile Memory: New Floating Gate Memory with Excellent Retention Characteristics (Adv. Electron. Mater. 4/2019). <i>Advanced Electronic Materials</i> , 2019 , 5, 1970018	6.4	3
47	Pressure-mediated contact quality improvement between monolayer MoS 2 and graphite. <i>Chinese Physics B</i> , 2019 , 28, 017301	1.2	2
46	Band evolution of two-dimensional transition metal dichalcogenides under electric fields. <i>Applied Physics Letters</i> , 2019 , 115, 083104	3.4	4
45	The interface of epitaxial nanographene on GaN by PECVD. AIP Advances, 2019, 9, 095060	1.5	3
44	Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. <i>Nature</i> , 2019 , 574, 653-657	50.4	490
43	New Floating Gate Memory with Excellent Retention Characteristics. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800726	6.4	25
42	Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. <i>Physical Review B</i> , 2018 , 97,	3.3	18
41	Robust spin-valley polarization in commensurate MoS2/graphene heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	20
40	A graphene Zener-Klein transistor cooled by a hyperbolic substrate. <i>Nature Nanotechnology</i> , 2018 , 13, 47-52	28.7	43
39	Twist angle-dependent conductivities across MoS/graphene heterojunctions. <i>Nature Communications</i> , 2018 , 9, 4068	17.4	59
38	Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. <i>Physical Review Letters</i> , 2018 , 120, 216601	7.4	19
37	Graphene: Nanostructure engineering and applications. Frontiers of Physics, 2017, 12, 1	3.7	18
36	Argon Plasma Induced Phase Transition in Monolayer MoS. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10216-10219	16.4	234
35	Graphene-Contacted Ultrashort Channel Monolayer MoS Transistors. Advanced Materials, 2017 , 29, 170	2522	144
34	A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure. <i>Chinese Physics B</i> , 2017 , 26, 087306	1.2	7

33	Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. <i>Applied Physics Letters</i> , 2017 , 111, 263106	3.4	31
32	Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. <i>Nature Physics</i> , 2016 , 12, 1111-1115	16.2	136
31	Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 444002	1.8	9
30	Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. <i>Physical Review Letters</i> , 2016 , 116, 126101	7.4	103
29	Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 1950-6	24	172
28	Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene Superlattice. <i>Nano Letters</i> , 2016 , 16, 2387-92	11.5	25
27	The Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2. <i>Crystals</i> , 2016 , 6, 115	2.3	15
26	Rolling Up a Monolayer MoS2 Sheet. <i>Small</i> , 2016 , 12, 3770-4	11	39
25	Switchable friction enabled by nanoscale self-assembly on graphene. <i>Nature Communications</i> , 2016 , 7, 10745	17.4	40
24	Enhancement of carrier mobility in MoS2 field effect transistors by a SiO2 protective layer. <i>Applied Physics Letters</i> , 2016 , 108, 203105	3.4	25
23	Graphene nanoribbons epitaxy on boron nitride. Applied Physics Letters, 2016, 108, 113103	3.4	17
22	Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. <i>Applied Physics Letters</i> , 2016 , 109, 053101	3.4	17
21	Gate tunable MoS 2 Black phosphorus heterojunction devices. 2D Materials, 2015, 2, 034009	5.9	55
20	Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride. <i>ACS Nano</i> , 2015 , 9, 11382-8	16.7	13
19	Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15632-5	16.4	243
18	Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano, 2015, 9, 1622-9	16.7	194
17	Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates. <i>Carbon</i> , 2014 , 72, 387-392	10.4	38
16	Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. <i>ACS Nano</i> , 2014 , 8, 6024-30	16.7	233

LIST OF PUBLICATIONS

15	Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. <i>Nature Communications</i> , 2014 , 5, 4461	17.4	122
14	Gate-dependent pseudospin mixing in graphene/boron nitride moir uperlattices. <i>Nature Physics</i> , 2014 , 10, 743-747	16.2	53
13	Fabrication of high-quality all-graphene devices with low contact resistances. <i>Nano Research</i> , 2014 , 7, 1449-1456	10	14
12	A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano, 2014, 8, 3955-60	16.7	28
11	Epitaxial growth of single-domain graphene on hexagonal boron nitride. <i>Nature Materials</i> , 2013 , 12, 79	2 <i>-2</i> 7	745
10	Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale, 2012 , 4, 2005-9	7.7	33
9	Competitive Growth and Etching of Epitaxial Graphene. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 269	29 ₅₋ 8 69.	31 8
8	Graphene edge lithography. <i>Nano Letters</i> , 2012 , 12, 4642-6		
O	Graphene eage tichography. Naho Letters, 2012, 12, 4042 0	11.5	39
7	Vapour-phase graphene epitaxy at low temperatures. <i>Nano Research</i> , 2012 , 5, 258-264	10	39
7	Vapour-phase graphene epitaxy at low temperatures. <i>Nano Research</i> , 2012 , 5, 258-264	10	30
7	Vapour-phase graphene epitaxy at low temperatures. <i>Nano Research</i> , 2012 , 5, 258-264 Catalyst-free growth of nanographene films on various substrates. <i>Nano Research</i> , 2011 , 4, 315-321 Patterning graphene with zigzag edges by self-aligned anisotropic etching. <i>Advanced Materials</i> ,	10	30 192
7 6 5	Vapour-phase graphene epitaxy at low temperatures. <i>Nano Research</i> , 2012 , 5, 258-264 Catalyst-free growth of nanographene films on various substrates. <i>Nano Research</i> , 2011 , 4, 315-321 Patterning graphene with zigzag edges by self-aligned anisotropic etching. <i>Advanced Materials</i> , 2011 , 23, 3061-5	10 10 24 24	30 192 150
7 6 5	Vapour-phase graphene epitaxy at low temperatures. <i>Nano Research</i> , 2012 , 5, 258-264 Catalyst-free growth of nanographene films on various substrates. <i>Nano Research</i> , 2011 , 4, 315-321 Patterning graphene with zigzag edges by self-aligned anisotropic etching. <i>Advanced Materials</i> , 2011 , 23, 3061-5 An anisotropic etching effect in the graphene basal plane. <i>Advanced Materials</i> , 2010 , 22, 4014-9	10 10 24 24	30 192 150 220