Jiacheng Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935675/publications.pdf

Version: 2024-02-01

713013 623188 21 758 14 21 citations g-index h-index papers 21 21 21 1084 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing reveals B cell-T cell interactions in vascular adventitia of hyperhomocysteinemia-accelerated atherosclerosis. Protein and Cell, 2022, 13, 540-547.	4.8	10
2	Porcine ZC3H11A Is Essential for the Proliferation of Pseudorabies Virus and Porcine Circovirus 2. ACS Infectious Diseases, 2022, , .	1.8	5
3	Single-cell RNA sequencing reveals cell type- and artery type-specific vascular remodelling in male spontaneously hypertensive rats. Cardiovascular Research, 2021, 117, 1202-1216.	1.8	28
4	NSun2 regulates aneurysm formation by promoting autotaxin expression and T cell recruitment. Cellular and Molecular Life Sciences, 2021, 78, 1709-1727.	2.4	17
5	Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxidants and Redox Signaling, 2021, 35, 192-203.	2.5	11
6	Nonbone Marrow CD34 ⁺ Cells Are Crucial for Endothelial Repair of Injured Artery. Circulation Research, 2021, 129, e146-e165.	2.0	28
7	Shikonin attenuates hyperhomocysteinemia-induced CD4+ T cell inflammatory activation and atherosclerosis in ApoEâ^'/â^' mice by metabolic suppression. Acta Pharmacologica Sinica, 2020, 41, 47-55.	2.8	27
8	B cell-derived anti-beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia-aggravated abdominal aortic aneurysm. Cardiovascular Research, 2020, 116, 1897-1909.	1.8	16
9	Impact of Local Alloimmunity and Recipient Cells in Transplant Arteriosclerosis. Circulation Research, 2020, 127, 974-993.	2.0	17
10	Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors. Cellular and Molecular Life Sciences, 2020, 77, 5299-5320.	2.4	24
11	Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2049-2066.	1.1	72
12	Tâ€cell–derived extracellular vesicles regulate Bâ€cell IgG production <i>via</i> pyruvate kinase muscle isozyme 2. FASEB Journal, 2019, 33, 12780-12799.	0.2	14
13	Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models. Circulation Research, 2019, 125, 223-241.	2.0	56
14	DKK3 (Dikkopf-3) Transdifferentiates Fibroblasts Into Functional Endothelial Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 765-773.	1.1	19
15	Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1055-1071.	1.1	78
16	Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. Journal of Biological Chemistry, 2018, 293, 8089-8102.	1.6	58
17	GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biology, 2018, 17, 386-399.	3.9	24
18	Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circulation Research, 2018, 123, 451-466.	2.0	34

#	Article	IF	CITATIONS
19	PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. Journal of Molecular Medicine, 2018, 96, 585-600.	1.7	56
20	Reactive Oxygen Species Generation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e41-e52.	1.1	109
21	Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming. Journal of Immunology, 2017, 198, 170-183.	0.4	55