Ana Rita C Morais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935562/publications.pdf

Version: 2024-02-01

34 2,410 18 32
papers citations h-index g-index

37 37 37 3274
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chemistry, 2017, 19, 4200-4233.	4.6	542
2	Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 2015, 8, 3366-3390.	3.6	321
3	Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chemical Reviews, 2015, 115, 3-27.	23.0	238
4	lonic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes, 2013, 1 , .	2.3	192
5	Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 2016, 18, 6160-6204.	4.6	136
6	Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification. ACS Sustainable Chemistry and Engineering, 2016, 4, 1643-1652.	3.2	117
7	The CO ₂ -assisted autohydrolysis of wheat straw. Green Chemistry, 2014, 16, 238-246.	4.6	99
8	A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO ₂ as a sustainable catalyst. Green Chemistry, 2016, 18, 2985-2994.	4.6	96
9	Integrated conversion of agroindustrial residue with high pressure CO ₂ within the biorefinery concept. Green Chemistry, 2014, 16, 4312-4322.	4.6	95
10	Chemical and biological-based isoprene production: Green metrics. Catalysis Today, 2015, 239, 38-43.	2.2	93
11	High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency. Bioresource Technology, 2017, 224, 639-647.	4.8	66
12	Green chemistry and the biorefinery concept. Sustainable Chemical Processes, 2013, 1 , .	2.3	52
13	Highly efficient and selective CO ₂ -adjunctive dehydration of xylose to furfural in aqueous media with THF. Green Chemistry, 2016, 18, 2331-2334.	4.6	50
14	Selective hydrolysis of wheat straw hemicellulose using high-pressure CO ₂ as catalyst. RSC Advances, 2015, 5, 73935-73944.	1.7	45
15	Phase Equilibria, Diffusivities, and Equation of State Modeling of HFC-32 and HFC-125 in Imidazolium-Based Ionic Liquids for the Separation of R-410A. Industrial & Engineering Chemistry Research, 2020, 59, 18222-18235.	1.8	43
16	Kinetic modeling of hemicellulose-derived biomass hydrolysis under high pressure CO2–H2O mixture technology. Journal of Supercritical Fluids, 2015, 99, 95-102.	1.6	39
17	Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars. Energy, 2018, 151, 536-544.	4.5	36
18	Effective Extraction of Lignin from Elephant Grass Using Imidazole and Its Effect on Enzymatic Saccharification To Produce Fermentable Sugars. Industrial & Engineering Chemistry Research, 2017, 56, 5138-5145.	1.8	31

#	Article	IF	CITATIONS
19	Cattle fat valorisation through biofuel production by hydrogenation in supercritical carbon dioxide. RSC Advances, 2014, 4, 32081.	1.7	14
20	Viscosity of 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Saturated with Compressed CO ₂ . Journal of Chemical & Engineering Data, 2019, 64, 4658-4667.	1.0	14
21	Viscosity and Density of a Polyol Ester Lubricating Oil Saturated with Compressed Hydrofluoroolefin Refrigerants. Journal of Chemical & Engineering Data, 2020, 65, 4335-4346.	1.0	14
22	Selective single-stage xylan-to-xylose hydrolysis and its effect on enzymatic digestibility of energy crops giant reed and cardoon for bioethanol production. Industrial Crops and Products, 2017, 95, 104-112.	2.5	11
23	Solubility and Diffusivity of Hydrofluoroolefin Refrigerants in a Polyol Ester Lubricant. Industrial & Engineering Chemistry Research, 2020, 59, 6279-6287.	1.8	10
24	Development of an ammonia pretreatment that creates synergies between biorefineries and advanced biomass logistics models. Green Chemistry, 2022, 24, 4443-4462.	4.6	10
25	High-Pressure Vaporâ^Liquid Equilibria of 1-Alkyl-1-Methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids and CO ₂ . Journal of Chemical & Engineering Data, 2019, 64, 4668-4678.	1.0	9
26	Enzymatic Hydrolysis, Kinetic Modeling of Hemicellulose Fraction, and Energy Efficiency of Autohydrolysis Pretreatment Using Agave Bagasse. Bioenergy Research, 2023, 16, 75-87.	2.2	8
27	The phase equilibrium phenomenon in model hydrogenation of oleic acid. Monatshefte Fýr Chemie, 2014, 145, 1555-1560.	0.9	7
28	Phase equilibrium and diffusivities of hydrofluorocarbons in a synthetic polyol ester lubricant. AICHE Journal, 2020, 66, e16241.	1.8	6
29	Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production. Biofuels and Biorefineries, 2017, , 45-80.	0.5	6
30	Hydrothermal Pretreatment Using Supercritical CO2 in the Biorefinery Context., 2017,, 353-376.		4
31	Protein Stabilization and Delivery: A Case Study of Invasion Plasmid Antigen D Adsorbed on Porous Silica. Langmuir, 2020, 36, 14276-14287.	1.6	3
32	Viscosity and Density of an ISO VG 32 Polyol Ester Lubricant Saturated with Compressed Hydrofluorocarbon Gases: R-134a, R-32, and R-125. Journal of Chemical & Engineering Data, 2022, 67, 1824-1833.	1.0	2
33	New Developments on Ionic Liquid-Tolerant Microorganisms Leading Toward a More Sustainable Biorefinery., 2021,, 57-79.		0
34	CHAPTER 18. Use of Water and Supercritical Carbon Dioxide in Novel Methodologies for Biomass Processing. RSC Green Chemistry, 2018, , 532-559.	0.0	0