
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophysical Journal, 2003, 582, 559-573.	1.6	782
2	Formation of supermassive black holes by direct collapse in pre-galactic haloes. Monthly Notices of the Royal Astronomical Society, 2006, 370, 289-298.	1.6	610
3	Formation of supermassive black holes. Astronomy and Astrophysics Review, 2010, 18, 279-315.	9.1	570
4	RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE. Astrophysical Journal, 2015, 813, 82.	1.6	434
5	The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3948-3964.	1.6	315
6	Rapid Growth of Highâ€Redshift Black Holes. Astrophysical Journal, 2005, 633, 624-629.	1.6	283
7	Cosmological Black Hole Spin Evolution by Mergers and Accretion. Astrophysical Journal, 2008, 684, 822-828.	1.6	281
8	The evolution of massive black hole seeds. Monthly Notices of the Royal Astronomical Society, 0, 383, 1079-1088.	1.6	249
9	Lowâ€Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies. Astrophysical Journal, 2004, 611, 623-632.	1.6	212
10	Black hole evolution – I. Supernova-regulated black hole growth. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1502-1518.	1.6	165
11	Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3935-3948.	1.6	157
12	THE CASE FOR SUPERCRITICAL ACCRETION ONTO MASSIVE BLACK HOLES AT HIGH REDSHIFT. Astrophysical Journal, 2015, 804, 148.	1.6	151
13	Journey to the MBH–Ã relation: the fate of low-mass black holes in the Universe. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1911-1918.	1.6	147
14	Growth and activity of black holes in galaxy mergers with varying mass ratios. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2123-2143.	1.6	147
15	Gravitational recoil from accretion-aligned black-hole binaries. Physical Review D, 2012, 85, .	1.6	126
16	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	5.2	119
17	Gravitational waves from the remnants of the first stars. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L74-L78.	1.2	118
18	Reconstructing the massive black hole cosmic history through gravitational waves. Physical Review D, 2011, 83, .	1.6	110

#	Article	IF	CITATIONS
19	Black hole evolution – III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1590-1606.	1.6	109
20	WANDERING BLACK HOLES IN BRIGHT DISK GALAXY HALOS. Astrophysical Journal Letters, 2010, 721, L148-L152.	3.0	99
21	From the first stars to the first black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3356-3371.	1.6	96
22	The Formation of Galaxy Stellar Cores by the Hierarchical Merging of Supermassive Black Holes. Astrophysical Journal, 2003, 593, 661-666.	1.6	94
23	Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Classical and Quantum Gravity, 2009, 26, 094027.	1.5	93
24	On the number density of †direct collapse' black hole seeds. Monthly Notices of the Royal Astronomical Society, 2016, 463, 529-540.	1.6	91
25	THE FIRST MASSIVE BLACK HOLE SEEDS AND THEIR HOSTS. Astrophysical Journal, 2011, 742, 13.	1.6	88
26	Introducing the NEWHORIZON simulation: Galaxy properties with resolved internal dynamics across cosmic time. Astronomy and Astrophysics, 2021, 651, A109.	2.1	88
27	How to quench a galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 547-558.	1.6	86
28	The growth efficiency of high-redshift black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1922-1933.	1.6	85
29	The origins of massive black holes. Nature Reviews Physics, 2021, 3, 732-743.	11.9	85
30	The erratic dynamical life of black hole seeds in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 101-111.	1.6	81
31	Exploring intermediate and massive black-hole binaries with the Einstein Telescope. General Relativity and Gravitation, 2011, 43, 485-518.	0.7	77
32	LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Physical Review D, 2010, 81, .	1.6	68
33	HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?. Astrophysical Journal, 2011, 737, 50.	1.6	68
34	Shining in the dark: the spectral evolution of the first black holes. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3771-3777.	1.6	67
35	Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2219-2238.	1.6	67
36	Super-Eddington accretion and feedback from the first massive seed black holes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3892-3906.	1.6	65

#	Article	IF	CITATIONS
37	Supermassive black holes in cosmological simulations I: <i>M</i> BH â^' <i>M</i> ⋆ relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1940-1975.	1.6	63
38	Wandering Supermassive Black Holes in Milky-Way-mass Halos. Astrophysical Journal Letters, 2018, 857, L22.	3.0	61
39	Reionization with galaxies and active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3065-3078.	1.6	61
40	Conditions for Optimal Growth of Black Hole Seeds. Astrophysical Journal Letters, 2017, 850, L42.	3.0	60
41	Escape of ionizing radiation from high-redshift dwarf galaxies: role of AGN feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5607-5625.	1.6	57
42	The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2336-2350.	1.6	57
43	Nuclear coups: dynamics of black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2014, 439, 474-487.	1.6	56
44	High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4004-4022.	1.6	54
45	On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars. Astrophysical Journal Letters, 2017, 836, L1.	3.0	51
46	Massive Black Hole Merger Rates: The Effect of Kiloparsec Separation Wandering and Supernova Feedback. Astrophysical Journal, 2020, 904, 16.	1.6	47
47	Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies. Astrophysical Journal, 2018, 852, 131.	1.6	44
48	The birth of a supermassive black hole binary. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3646-3656.	1.6	43
49	High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays. Astrophysical Journal, 2017, 849, 155.	1.6	42
50	INFERENCES ON THE RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE HIGH-REDSHIFT UNIVERSE. Astrophysical Journal Letters, 2016, 820, L6.	3.0	41
51	Black hole evolution – II. Spinning black holes in a supernova-driven turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2333-2346.	1.6	40
52	The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2884-2903.	1.6	39
53	Exploring the nature of the Lyman-α emitter CR7. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2184-2202.	1.6	38
54	The OBELISK simulation: Galaxies contribute more than AGN to Hâ€ [−] I reionization of protoclusters. Astronomy and Astrophysics, 2021, 653, A154.	2.1	37

#	Article	IF	CITATIONS
55	THE RELATIVE ROLE OF GALAXY MERGERS AND COSMIC FLOWS IN FEEDING BLACK HOLES. Astrophysical Journal, 2013, 779, 136.	1.6	36
56	Hyperaccreting black holes in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1102-1107.	1.6	35
57	New Horizon: On the Origin of the Stellar Disk and Spheroid of Field Galaxies at zÂ=Â0.7. Astrophysical Journal, 2019, 883, 25.	1.6	34
58	How AGN and SN Feedback Affect Mass Transport and Black Hole Growth in High-redshift Galaxies. Astrophysical Journal, 2017, 836, 216.	1.6	33
59	The sustainable growth of the first black holes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 589-595.	1.6	33
60	Chasing the observational signatures of seed black holes at zÂ>Â7: candidate observability. Monthly Notices of the Royal Astronomical Society, 2018, 476, 407-420.	1.6	33
61	Early growth of typical high-redshift black holes seeded by direct collapse. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5016-5025.	1.6	33
62	The Star Clusters That Make Black Hole Binaries across Cosmic Time. Astrophysical Journal, 2019, 873, 100.	1.6	33
63	Constraining supermassive black hole evolution through the continuity equation. Astronomy and Astrophysics, 2017, 600, A64.	2.1	32
64	Observing the inspiral of coalescing massive black hole binaries with LISA in the era of multimessenger astrophysics. Physical Review D, 2020, 102, .	1.6	32
65	The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1206-1229.	1.6	31
66	MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES. Astrophysical Journal, 2013, 768, 29.	1.6	30
67	Black hole obscuration and duty-cycles mediated by AGN feedback in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 487, 819-831.	1.6	29
68	The first supermassive black holes: indications from models for future observations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2694-2709.	1.6	29
69	Exploring the Origin of Thick Disks Using the NewHorizon and Galactica Simulations. Astrophysical Journal, Supplement Series, 2021, 254, 2.	3.0	28
70	The lifetime of binary black holes in Sérsic galaxy models. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4985-4994.	1.6	25
71	Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2276-2285.	1.6	24
72	Population Estimates for Electromagnetically Distinguishable Supermassive Binary Black Holes. Astrophysical Journal, 2019, 879, 110.	1.6	20

#	Article	IF	CITATIONS
73	The mass assembly of high-redshift black holes. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2146-2158.	1.6	19
74	Accelerated orbital decay of supermassive black hole binaries in merging nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3676-3689.	1.6	18
75	Black hole formation and growth with non-Gaussian primordial density perturbations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1901-1912.	1.6	17
76	Expanding the Sample: The Relationship between the Black Hole Mass of BCGs and the Total Mass of Galaxy Clusters. Astrophysical Journal, 2019, 875, 141.	1.6	17
77	Active galactic nucleus outflows in galaxy discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2288-2307.	1.6	16
78	THE ORIGINS AND THE EARLY EVOLUTION OF QUASARS AND SUPERMASSIVE BLACK HOLES. , 2008, , .		16
79	Modelling a bright zÂ= 6 galaxy at the faint end of the AGN luminosity function. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3453-3463.	1.6	15
80	High-redshift quasars and their host galaxies – II. Multiphase gas and stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5760-5779.	1.6	11
81	Massive black holes: formation and evolution. Proceedings of the International Astronomical Union, 2006, 2, 51-58.	0.0	9
82	Tidal disruption events in the first billion years of a galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3944-3956.	1.6	9
83	Concordance between Observations and Simulations in the Evolution of the Mass Relation between Supermassive Black Holes and Their Host Galaxies. Astrophysical Journal, 2022, 933, 132.	1.6	6
84	Preferential Accretion in the Supermassive Black Holes of Milky Way-size Galaxies Due to Direct Feeding by Satellites. Astrophysical Journal, 2018, 860, 20.	1.6	5
85	Real galaxy mergers from galaxy pair catalogues. Monthly Notices of the Royal Astronomical Society, 2020, 493, 922-929.	1.6	5
86	The Early Evolution of Massive Black Holes. Proceedings of the International Astronomical Union, 2009, 5, 26-33.	0.0	1