Chaochao Dun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935320/publications.pdf

Version: 2024-02-01

236925 182427 2,721 54 25 51 h-index citations g-index papers 61 61 61 4293 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dimensional Control over Metal Halide Perovskite Crystallization Guided by Active Learning. Chemistry of Materials, 2022, 34, 756-767.	6.7	13
2	Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications, 2022, 13, 1409.	12.8	42
3	Hydrogen Storage Performance of Preferentially Oriented Mg/rGO Hybrids. Chemistry of Materials, 2022, 34, 2963-2971.	6.7	8
4	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	3.7	6
5	Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.	13.7	39
6	Synthesis of 2D anatase TiO ₂ with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS ₂ nanosheets. Journal of Materials Chemistry A, 2022, 10, 13884-13894.	10.3	7
7	Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. Journal of Materials Chemistry A, 2021, 9, 15696-15703.	10.3	35
8	Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO ₂ electroreduction. RSC Advances, 2021, 11, 23948-23959.	3.6	6
9	Binary and Ternary Colloidal Cuâ€Snâ€Te Nanocrystals for Thermoelectric Thin Films. Small, 2021, 17, e2006729.	10.0	8
10	Origins of Minimized Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in WS ₂ /WSe ₂ Lateral Superlattice. ACS Omega, 2021, 6, 7879-7886.	3.5	15
11	Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO ₂ Supported Single-Site Catalysts. Journal of the American Chemical Society, 2021, 143, 12074-12081.	13.7	70
12	Chemical upgrade of carbon monoxide to acetate on an atomically dispersed copper catalyst via CO-insertion. Materials Today Physics, 2021, 19, 100418.	6.0	12
13	Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie, 2021, 133, 26019-26028.	2.0	2
14	Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie - International Edition, 2021, 60, 25815-25824.	13.8	11
15	Additive Destabilization of Porous Magnesium Borohydride Framework with Coreâ€Shell Structure. Small, 2021, 17, e2101989.	10.0	6
16	Rýcktitelbild: Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage (Angew. Chem. 49/2021). Angewandte Chemie, 2021, 133, 26204-26204.	2.0	0
17	Spontaneous dynamical disordering of borophenes in MgB2 and related metal borides. Nature Communications, 2021, 12, 6268.	12.8	14
18	Back Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	17.3	0

#	Article	IF	CITATIONS
19	Synthesis of new <scp>twoâ€dimensional</scp> titanium carbonitride <scp>Ti₂C₀</scp> _. <scp>₅N₀</scp> _{.5sodiumâ€ion battery. InformaÄnÃ-Materiály, 2021, 3, 1422-1430.}	sub>T	> zi}x
20	Lattice Strain Enhances Thermoelectric Properties in Sb ₂ Te ₃ /Te Heterostructure. Advanced Electronic Materials, 2020, 6, 1900735.	5.1	28
21	High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet. ACS Applied Energy Materials, 2020, 3, 1199-1206.	5.1	43
22	Flexible Thermoelectric Devices of Ultrahigh Power Factor by Scalable Printing and Interface Engineering. Advanced Functional Materials, 2020, 30, 1905796.	14.9	93
23	Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nature Communications, 2020, 11, 3928.	12.8	101
24	Bi _{0.5} Sb _{1.5} Te ₃ -based films for flexible thermoelectric devices. Journal of Materials Chemistry A, 2020, 8, 4552-4561.	10.3	53
25	Formation of Hexagonal PdSe ₂ for Electronics and Catalysis. Journal of Physical Chemistry C, 2020, 124, 10935-10940.	3.1	16
26	3D Conformal Printing and Photonic Sintering of Highâ€Performance Flexible Thermoelectric Films Using 2D Nanoplates. Advanced Functional Materials, 2019, 29, 1901930.	14.9	89
27	3D Printing of Solutionâ€Processable 2D Nanoplates and 1D Nanorods for Flexible Thermoelectrics with Ultrahigh Power Factor at Lowâ€Medium Temperatures. Advanced Science, 2019, 6, 1901788.	11.2	33
28	Bi ₂ Te ₃ Plates with Single Nanopore: The Formation of Surface Defects and Self-Repair Growth. Chemistry of Materials, 2018, 30, 1965-1970.	6.7	16
29	In Situ Electrical Properties' Investigation and Nanofabrication of Ag/Sb ₂ Te ₃ Assembled Multilayers' Film. Advanced Materials Interfaces, 2018, 5, 1701210.	3.7	6
30	Controllable colloidal synthesis of anisotropic tin dichalcogenide nanocrystals for thin film thermoelectrics. Nanoscale, 2018, 10, 2533-2541.	5. 6	17
31	Interface Engineering of Colloidal CdSe Quantum Dot Thin Films as Acid-Stable Photocathodes for Solar-Driven Hydrogen Evolution. ACS Applied Materials & Solar-Driven Hydrogen Evolution. ACS Applied Materials & Solar-Driven Hydrogen Evolution.	8.0	11
32	Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018, 11, 762-768.	10.4	94
33	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS ₂ . ACS Applied Materials & Applied Materia	8.0	57
34	Topological doping effects in 2D chalcogenide thermoelectrics. 2D Materials, 2018, 5, 045008.	4.4	5
35	Controllable Colloidal Synthesis of Tin(II) Chalcogenide Nanocrystals and Their Solutionâ€Processed Flexible Thermoelectric Thin Films. Small, 2018, 14, e1801949.	10.0	26
36	Solution Processing Smallâ€Molecule Organic Emitter in Fieldâ€Induced, Carrier Gated Lighting Devices. Advanced Optical Materials, 2017, 5, 1600917.	7.3	5

#	Article	IF	Citations
37	2D Chalcogenide Nanoplate Assemblies for Thermoelectric Applications. Advanced Materials, 2017, 29, 1700070.	21.0	54
38	Polymer Gating White Flexible Fieldâ€Induced Lighting Device. Advanced Materials Technologies, 2017, 2, 1700017.	5.8	8
39	2D Chalcogenides: 2D Chalcogenide Nanoplate Assemblies for Thermoelectric Applications (Adv.) Tj ETQq1 1 0.7	784314 rg 21.0	BT /Overlock
40	Solution-based synthesis and processing of Sn- and Bi-doped Cu ₃ SbSe ₄ nanocrystals, nanomaterials and ring-shaped thermoelectric generators. Journal of Materials Chemistry A, 2017, 5, 2592-2602.	10.3	73
41	Ultrathin, Washable, and Largeâ€Area Graphene Papers for Personal Thermal Management. Small, 2017, 13, 1702645.	10.0	177
42	Defect Engineering by Codoping in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><ms .<="" 2017,="" 8,="" applied,="" physical="" review="" scintillators.="" single-crystalline="" th=""><th>ımlansrow></th><th><monl:mn>3</monl:mn></th></ms></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ım lans row>	<monl:mn>3</monl:mn>
43	Selfâ€Assembled Heterostructures: Selective Growth of Metallic Nanoparticles on V ₂ –VI ₃ Nanoplates. Advanced Materials, 2017, 29, 1702968.	21.0	34
44	Synthesis and characterization of Ar-annealed zinc oxide nanostructures. AIP Advances, 2016, 6, .	1.3	2
45	Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy, 2016, 26, 172-179.	16.0	178
46	Achieving High Performance in AC-Field Driven Organic Light Sources. Scientific Reports, 2016, 6, 24116.	3.3	18
47	Organic Electronics: Layered, Nanonetwork Composite Cathodes for Flexible, Highâ€Efficiency, Organic Light Emitting Devices (Adv. Funct. Mater. 28/2015). Advanced Functional Materials, 2015, 25, 4370-4370.	14.9	0
48	Layered, Nanonetwork Composite Cathodes for Flexible, Highâ€Efficiency, Organic Light Emitting Devices. Advanced Functional Materials, 2015, 25, 4397-4404.	14.9	12
49	Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. Physical Chemistry Chemical Physics, 2015, 17, 8591-8595.	2.8	105
50	Environmentally benign synthesis of high-quality, band gap-tunable, homogeneous Te/Se alloyed nanowires. RSC Advances, 2015, 5, 69268-69272.	3.6	16
51	Layered Bi ₂ Se ₃ Nanoplate/Polyvinylidene Fluoride Composite Based n-type Thermoelectric Fabrics. ACS Applied Materials & Description (1988) 100	8.0	108
52	Nanowires as Building Blocks to Fabricate Flexible Thermoelectric Fabric: The Case of Copper Telluride Nanowires. ACS Applied Materials & Diterfaces, 2015, 7, 21015-21020.	8.0	90
53	Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and Polyvinylidene Fluoride composite with decoupled Seebeck coefficient and electrical conductivity. Nano Energy, 2015, 18, 306-314.	16.0	119
54	Cu2ZnSnS <i>x</i> O4â^' <i>x</i> and Cu2ZnSnS <i>x</i> Se4â^' <i>x</i> First principles simulations of optimal alloy configurations and their energies. Journal of Applied Physics, 2014, 115, .	2.5	22