## Cody L Ritt ## List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/3935098/cody-l-ritt-publications-by-year.pdf Version: 2024-04-28 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 14 604 11 15 g-index 15 1,089 14.4 4.72 ext. papers ext. citations avg, IF L-index | # | Paper | IF | Citations | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 14 | Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores <i>Science Advances</i> , <b>2022</b> , 8, eabl5771 | 14.3 | 6 | | 13 | Laser Interferometry for Precise Measurement of Ultralow Flow Rates from Permeable Materials. <i>Environmental Science and Technology Letters</i> , <b>2022</b> , 9, 233-238 | 11 | | | 12 | Graphene oxide membranes with stable porous structure for ultrafast water transport. <i>Nature Nanotechnology</i> , <b>2021</b> , 16, 337-343 | 28.7 | 95 | | 11 | Characterization of Dehydration during Ion Transport in Polymeric Nanochannels. <i>Journal of the American Chemical Society</i> , <b>2021</b> , 143, 14242-14252 | 16.4 | 18 | | 10 | Chlorine-Resistant Epoxide-Based Membranes for Sustainable Water Desalination. <i>Environmental Science and Technology Letters</i> , <b>2021</b> , 8, 818-824 | 11 | 1 | | 9 | The open membrane database: SynthesisEtructurePerformance relationships of reverse osmosis membranes. <i>Journal of Membrane Science</i> , <b>2021</b> , 119927 | 9.6 | 12 | | 8 | Thin film composite membrane compaction in high-pressure reverse osmosis. <i>Journal of Membrane Science</i> , <b>2020</b> , 610, 118268 | 9.6 | 38 | | 7 | Towards single-species selectivity of membranes with subnanometre pores. <i>Nature Nanotechnology</i> , <b>2020</b> , 15, 426-436 | 28.7 | 138 | | 6 | The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. <i>Energy and Environmental Science</i> , <b>2020</b> , 13, 1694-1710 | 35.4 | 105 | | 5 | Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS) Membranes to Nanosheet Stacking Behavior. <i>Environmental Science &amp; Environmental Science &amp; Technology</i> , <b>2020</b> , 54, 9640-9651 | 10.3 | 31 | | 4 | Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , <b>2020</b> , 22, 2540-2548 | 3.6 | 16 | | 3 | Ionization behavior of nanoporous polyamide membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2020</b> , 117, 30191-30200 | 11.5 | 21 | | 2 | Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets. <i>Environmental Science &amp; Environmental Env</i> | 10.3 | 71 | | 1 | Monte Carlo Simulations of Framework Defects in Layered Two-Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. <i>Environmental Science &amp; Environmental Science</i> | 10.3 | 48 |