
Kunio Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3935090/publications.pdf Version: 2024-02-01

Кимо Існи

#	Article	IF	CITATIONS
1	Role of Epoxyeicosatrienoic Acids in Acetylcholine-Induced Dilation of Rat Retinal Arterioles <i>in Vivo</i> . Biological and Pharmaceutical Bulletin, 2021, 44, 82-87.	1.4	5
2	L-Citrulline ameliorates the attenuation of acetylcholine-induced vasodilation of retinal arterioles in diabetic rats. Heliyon, 2021, 7, e06532.	3.2	3
3	Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. International Journal of Molecular Sciences, 2021, 22, 4439.	4.1	15
4	Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2021, 44, 1860-1865.	1.4	0
5	4-Aminopyridine, a Voltage-Gated K ⁺ Channel Inhibitor, Attenuates Nitric Oxide-Mediated Vasodilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1123-1127.	1.4	4
6	Involvement of matrix metalloproteinases in capillary degeneration following NMDA-induced neurotoxicity in the neonatal rat retina. Experimental Eye Research, 2019, 182, 101-108.	2.6	4
7	Probucol Slows the Progression of Cataracts in Streptozotocin-Induced Hyperglycemic Rats. Pharmacology, 2019, 103, 212-219.	2.2	4
8	Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Experimental Eye Research, 2018, 171, 30-36.	2.6	33
9	Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity. Experimental Eye Research, 2018, 168, 115-127.	2.6	8
10	Transient phenotypic changes in endothelial cells and pericytes in neonatal mouse retina following shortâ€ŧerm blockade of vascular endothelial growth factor receptors. Developmental Dynamics, 2018, 247, 699-711.	1.8	3
11	Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. Journal of Pharmacological Sciences, 2018, 138, 203-208.	2.5	11
12	Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2018, 41, 1586-1592.	1.4	29
13	A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Developmental Dynamics, 2017, 246, 186-200.	1.8	15
14	Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. European Journal of Pharmacology, 2017, 803, 124-129.	3.5	10
15	MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochemical and Biophysical Research Communications, 2017, 488, 329-334.	2.1	2
16	Stimulation of β1- and β2-adrenoceptors dilates retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 527-533.	3.0	7
17	l -Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway. Journal of Pharmacological Sciences, 2017, 133, 146-155.	2.5	8
18	Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. European Journal of Pharmacology, 2017, 812, 57-63.	3.5	12

Киміо Ізнії

#	Article	IF	CITATIONS
19	Probucol prevents the attenuation of β2-adrenoceptor-mediated vasodilation of retinal arterioles in diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1247-1253.	3.0	5
20	Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. Journal of Pharmacological Sciences, 2017, 135, 72-80.	2.5	24
21	Apelin-36 is protective against N-methyl-D-aspartic-acid-induced retinal ganglion cell death in the mice. European Journal of Pharmacology, 2016, 791, 213-220.	3.5	21
22	Protective effects of PFâ€4708671 against <i>N</i> â€methylâ€ <scp>d</scp> â€aspartic acidâ€induced retinal damage in rats. Fundamental and Clinical Pharmacology, 2016, 30, 529-536.	1.9	4
23	Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Experimental Eye Research, 2016, 143, 120-131.	2.6	16
24	Retinal region-dependent susceptibility of capillaries to high-concentration oxygen exposure and vascular endothelial growthÂfactor receptor inhibition in neonatal mice. Journal of Pharmacological Sciences, 2015, 129, 107-118.	2.5	4
25	Impaired retinal vasodilator response to acetylcholine in a rat model of NMDA-induced retinal degeneration. Journal of Pharmacological Sciences, 2015, 127, 211-216.	2.5	7
26	Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Experimental Eye Research, 2015, 135, 134-145.	2.6	53
27	Age-Dependent Changes in the Severity of Capillary Degeneration in Rat Retina Following <i>N</i> -Methyl-D-Aspartate-Induced Neurotoxicity. Current Eye Research, 2015, 40, 549-553.	1.5	11
28	P2X7 receptor antagonists protect against N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2015, 756, 52-58.	3.5	30
29	High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina. Experimental Eye Research, 2015, 137, 63-70.	2.6	17
30	l-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways inÂvivo. Journal of Pharmacological Sciences, 2015, 127, 419-423.	2.5	18
31	Involvement of prostaglandin 12 in nitric oxide-induced vasodilation of retinal arterioles in rats. European Journal of Pharmacology, 2015, 764, 249-255.	3.5	16
32	Regression of retinal capillaries following <i>N</i> â€methylâ€Dâ€aspartateâ€induced neurotoxicity in the neonatal rat retina. Journal of Neuroscience Research, 2015, 93, 380-390.	2.9	13
33	Effects of mTOR inhibition on normal retinal vascular development in the mouse. Experimental Eye Research, 2014, 129, 127-134.	2.6	18
34	Activation of the TRPV1 channel attenuates N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2014, 733, 13-22.	3.5	31
35	Effects of pre- and post-natal treatment with KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, on retinal vascular development and patterning in mice. Experimental Eye Research, 2014, 120, 127-137.	2.6	18
36	Hydrogen sulfide attenuates NMDA-induced neuronal injury via its anti-oxidative activity in the rat retina. Experimental Eye Research, 2014, 120, 90-96.	2.6	41

Киміо Ізнії

#	Article	IF	CITATIONS
37	Small Molecule Cyclin-Dependent Kinase Inhibitors Protect Against Neuronal Cell Death in the Ischemic-Reperfused Rat Retina. Journal of Ocular Pharmacology and Therapeutics, 2011, 27, 419-425.	1.4	22
38	Histological Protection by Donepezil Against Neurodegeneration Induced by Ischemia–Reperfusion in the Rat Retina. Journal of Pharmacological Sciences, 2010, 112, 327-335.	2.5	27
39	Protective effect of all-trans retinoic acid on NMDA-induced neuronal cell death in rat retina. European Journal of Pharmacology, 2010, 635, 56-61.	3.5	26
40	Histological protection by cilnidipine, a dual L/N-type Ca2+ channel blocker, against neurotoxicity induced by ischemia–reperfusion in rat retina. Experimental Eye Research, 2009, 88, 974-982.	2.6	39
41	Mexiletine inhibits pharmacological actions of salbutamol through blockade of β 2 -adrenoceptors in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 409-413.	3.0	2
42	Possible involvement of endothelium-derived hyperpolarizing factor (EDHF) in the depressor responses to platelet activating factor (PAF) in rats. British Journal of Pharmacology, 2000, 131, 1113-1120.	5.4	5
43	Lidocaine potentiates the relaxant effects of cAMP-elevating agents in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 605-609.	3.0	10