Cheng-Hao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1757-1763.	15.6	431
2	Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb ₂ S ₃ on Sulfur-Doped Graphene Sheets. ACS Nano, 2016, 10, 10953-10959.	7.3	344
3	Nanoscale Surface Modification of Lithiumâ€Rich Layeredâ€Oxide Composite Cathodes for Suppressing Voltage Fade. Angewandte Chemie - International Edition, 2015, 54, 13058-13062.	7.2	331
4	Stabilizing the Nanostructure of SnO ₂ Anodes by Transition Metals: A Route to Achieve High Initial Coulombic Efficiency and Stable Capacities for Lithium Storage. Advanced Materials, 2017, 29, 1605006.	11.1	306
5	Dramatically enhanced reversibility of Li ₂ 0 in SnO ₂ -based electrodes: the effect of nanostructure on high initial reversible capacity. Energy and Environmental Science, 2016, 9, 595-603.	15.6	300
6	V ₅ S ₈ –graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 107-113.	15.6	274
7	Construction of MoS ₂ /C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. ACS Nano, 2018, 12, 12578-12586.	7.3	272
8	A New rGOâ€Overcoated Sb ₂ Se ₃ Nanorods Anode for Na ⁺ Battery: In Situ Xâ€Ray Diffraction Study on a Live Sodiation/Desodiation Process. Advanced Functional Materials, 2017, 27, 1606242.	7.8	258
9	Sulfurâ€Tolerant Redoxâ€Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells. Advanced Materials, 2012, 24, 1439-1443.	11.1	251
10	A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction. Joule, 2018, 2, 938-949.	11.7	221
11	Mechanistic Origin of the High Performance of Yolk@Shell Bi ₂ S ₃ @N-Doped Carbon Nanowire Electrodes. ACS Nano, 2018, 12, 12597-12611.	7.3	213
12	Fabrication of SnS ₂ /Mn ₂ SnS ₄ /Carbon Heterostructures for Sodium-Ion Batteries with High Initial Coulombic Efficiency and Cycling Stability. ACS Nano, 2019, 13, 3666-3676.	7.3	205
13	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	15.6	204
14	Self‣tabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahighâ€Rate and Largeâ€Capacity Lithiumâ€Metal Anode. Angewandte Chemie - International Edition, 2020, 59, 2055-2060.	7.2	204
15	A highly active, CO ₂ -tolerant electrode for the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 2458-2466.	15.6	202
16	Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 24317-24323.	5.2	174
17	In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 2015, 11, 704-710.	8.2	173
18	Perovskite Sr2Fe1.5Mo0.5O6â^'δ as electrode materials for symmetrical solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 10039-10044.	3.8	166

#	Article	IF	CITATIONS
19	Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 15162-15169.	5.2	161
20	In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. Journal of Power Sources, 2017, 343, 483-491.	4.0	155
21	Heterostructured Nanocubeâ€5haped Binary Sulfide (SnCo)S ₂ Interlaced with Sâ€Doped Graphene as a Highâ€Performance Anode for Advanced Na ⁺ Batteries. Advanced Functional Materials, 2019, 29, 1807971.	7.8	154
22	Heterointerface Engineering of Hierarchical Bi ₂ S ₃ /MoS ₂ with Selfâ€Generated Rich Phase Boundaries for Superior Sodium Storage Performance. Advanced Functional Materials, 2020, 30, 1910732.	7.8	151
23	A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials, 2019, 16, 344-353.	9.5	150
24	Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Materials, 2019, 22, 66-95.	9.5	149
25	Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nature Communications, 2022, 13, 2319.	5.8	143
26	MoS ₂ -covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life. Journal of Materials Chemistry A, 2018, 6, 592-598.	5.2	142
27	MoS 2 encapsulated SnO 2 -SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chemical Engineering Journal, 2017, 316, 393-400.	6.6	136
28	High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage. Journal of Materials Chemistry A, 2018, 6, 17959-17966.	5.2	134
29	Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors. Applied Physics Letters, 2007, 90, 061914.	1.5	131
30	Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Materials, 2019, 23, 701-706.	9.5	122
31	FeSe2/nitrogen-doped carbon as anode material for Potassium-ion batteries. Chemical Engineering Journal, 2020, 393, 124590.	6.6	121
32	Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Materials, 2020, 28, 196-204.	9.5	117
33	N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chemical Engineering Journal, 2019, 358, 1147-1154.	6.6	112
34	Cu(II) Ions Induced Structural Transformation of Cobalt Selenides for Remarkable Enhancement in Oxygen/Hydrogen Electrocatalysis. ACS Catalysis, 2019, 9, 10761-10772.	5.5	110
35	A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601890	10.2	109
36	Surface Amorphization of Vanadium Dioxide (B) for Kâ€lon Battery. Advanced Energy Materials, 2020, 10, 2000717.	10.2	109

#	Article	IF	CITATIONS
37	High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. International Journal of Hydrogen Energy, 2010, 35, 3221-3226.	3.8	104
38	Cooperative quantum cutting in one-dimensional (YbxGd1â^'x)Al3(BO3)4:Tb3+ nanorods. Applied Physics Letters, 2007, 90, 021107.	1.5	103
39	Surface Modification of Na ₃ V ₂ (PO ₄) ₃ by Nitrogen and Sulfur Dual-Doped Carbon Layer with Advanced Sodium Storage Property. ACS Applied Materials & Interfaces, 2017, 9, 13151-13162.	4.0	103
40	Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy, 2019, 59, 582-590.	8.2	100
41	In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. Journal of Power Sources, 2016, 325, 410-416.	4.0	99
42	CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention. ACS Nano, 2021, 15, 1121-1132.	7.3	98
43	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	8.2	93
44	Three-dimensional (3D) flower-like MoSe2/N-doped carbon composite as a long-life and high-rate anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 357, 226-236.	6.6	92
45	Rational Design of TiO–TiO ₂ Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5055-5063.	4.0	91
46	Ba0.9Co0.7Fe0.2Nb0.1O3â^îr as cathode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 882-885.	2.3	90
47	Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chemical Engineering Journal, 2018, 334, 497-507.	6.6	83
48	Dualâ€Strategy of Cationâ€Doping and Nanoengineering Enables Fast and Stable Sodiumâ€Ion Storage in a Novel Fe/Mnâ€Based Layered Oxide Cathode. Advanced Science, 2020, 7, 2002199.	5.6	83
49	Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochimica Acta, 2017, 228, 241-250.	2.6	82
50	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Materials, 2016, 8, e300-e300.	3.8	80
51	Fe _{1â^'x} S@S-doped carbon core–shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 20229-20238.	5.2	80
52	Effects on microstructure of NiO–YSZ anode support fabricated by phase-inversion method. Journal of Membrane Science, 2010, 363, 250-255.	4.1	78
53	Micro-tubular solid oxide fuel cells fabricated by phase-inversion method. Electrochemistry Communications, 2010, 12, 657-660.	2.3	76
54	La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 3340-3346.	3.8	74

#	Article	IF	CITATIONS
55	A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chemical Engineering Journal, 2020, 384, 123328.	6.6	72
56	Improving the Electrocatalytic Activity and Durability of the La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î(} Cathode by Surface Modification. ACS Applied Materials & Interfaces, 2018, 10, 39785-39793.	4.0	71
57	MoS ₂ Decorated Fe ₃ O ₄ /Fe _{1–<i>x</i>} S@C Nanosheets as High-Performance Anode Materials for Lithium Ion and Sodium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 4739-4745.	3.2	70
58	Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst. Chemical Engineering Journal, 2020, 380, 122595.	6.6	70
59	Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 5187-5193.	3.8	69
60	Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3â~δelectrolyte. Journal of Power Sources, 2011, 196, 688-691.	4.0	68
61	Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chemical Engineering Journal, 2019, 378, 122243.	6.6	68
62	Sb/C composite as a high-performance anode for sodium ion batteries. Electrochimica Acta, 2017, 242, 159-164.	2.6	67
63	Phase transition–induced electrochemical performance enhancement of hierarchical CoCO3/CoO nanostructure for pseudocapacitor electrode. Nano Energy, 2015, 11, 736-745.	8.2	65
64	In situ X-ray diffraction investigation of CoSe2 anode for Na-ion storage: Effect of cut-off voltage on cycling stability. Electrochimica Acta, 2017, 258, 1387-1396.	2.6	63
65	In Situ Fabrication of Carbon-Encapsulated Fe ₇ X ₈ (X = S, Se) for Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 19040-19047.	4.0	63
66	A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Materials Today Energy, 2018, 8, 37-44.	2.5	61
67	Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+δ. Journal of Power Sources, 2012, 204, 40-45.	4.0	60
68	SnS2 nanoparticles anchored on three-dimensional reduced graphene oxide as a durable anode for sodium ion batteries. Chemical Engineering Journal, 2018, 339, 78-84.	6.6	59
69	Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries. Chemical Engineering Journal, 2018, 348, 653-660.	6.6	58
70	Scalable synthesis of FeS ₂ nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11, 3773-3779.	2.8	58
71	Fiber-Shape Na ₃ V ₂ (PO ₄) ₂ F ₃ @N-Doped Carbon as a Cathode Material with Enhanced Cycling Stability for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 25920-25929.	4.0	58
72	The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 Li-rich layered oxides. Journal of Power Sources, 2017, 346, 31-39.	4.0	57

5

#	Article	IF	CITATIONS
73	A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries. Energy Storage Materials, 2019, 17, 226-233.	9.5	57
74	Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries. Nano Energy, 2015, 18, 232-244.	8.2	56
75	Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. Journal of Power Sources, 2020, 448, 227572.	4.0	56
76	Exfoliated V 5 S 8 /graphite nanosheet with excellent electrochemical performance for enhanced lithium storage. Chemical Engineering Journal, 2017, 320, 485-493.	6.6	55
77	Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries. Energy Storage Materials, 2018, 12, 153-160.	9.5	55
78	Fluorine-Doped Carbon Surface Modification of Li-Rich Layered Oxide Composite Cathodes for High Performance Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16399-16411.	3.2	54
79	Enhanced white light emission from Dy3+/Ce3+ codoped GdAl3(BO3)4 phosphors by combustion synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 195-199.	1.7	53
80	In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage. Chemical Engineering Journal, 2020, 387, 123952.	6.6	53
81	Surfactants assisted synthesis and electrochemical properties of nano-LiFePO 4 /C cathode materials for low temperature applications. Journal of Power Sources, 2015, 288, 337-344.	4.0	49
82	Metal–Organic Frameworksâ€Derived Nitrogenâ€Doped Porous Carbon Nanocubes with Embedded Co Nanoparticles as Efficient Sulfur Immobilizers for Room Temperature Sodium–Sulfur Batteries. Small Methods, 2021, 5, e2100455.	4.6	48
83	La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 14, 75-77.	2.3	47
84	Electrolysis of Carbon Dioxide in a Solid Oxide Electrolyzer with Silver-Gadolinium-Doped Ceria Cathode. Journal of the Electrochemical Society, 2015, 162, F397-F402.	1.3	47
85	Activated Amorphous Carbon With High-Porosity Derived From Camellia Pollen Grains as Anode Materials for Lithium/Sodium Ion Batteries. Frontiers in Chemistry, 2018, 6, 366.	1.8	47
86	BaCo0.7Fe0.2Nb0.1O3â^´Î´ as cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 9164-9168.	4.0	46
87	A high-performance oxygen electrode for Li–O ₂ batteries: Mo ₂ C nanoparticles grown on carbon fibers. Journal of Materials Chemistry A, 2017, 5, 5690-5695.	5.2	46
88	Uniform Li deposition regulated <i>via</i> three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale, 2018, 10, 10018-10024.	2.8	46
89	Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24702-24708.	5.2	46
90	Ba0.9Co0.5Fe0.4Nb0.1O3â~δas novel oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 11572-11577.	3.8	45

#	Article	IF	CITATIONS
91	Activating Lattice Oxygen in Perovskite Oxide by B‧ite Cation Doping for Modulated Stability and Activity at Elevated Temperatures. Advanced Science, 2021, 8, e2102713.	5.6	44
92	NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for Li O2 battery with enhanced performances. Journal of Power Sources, 2016, 319, 19-26.	4.0	43
93	Sb@C/expanded graphite as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2018, 744, 481-486.	2.8	42
94	A Scalable Approach for Dendrite-Free Alkali Metal Anodes via Room-Temperature Facile Surface Fluorination. ACS Applied Materials & Interfaces, 2019, 11, 4962-4968.	4.0	42
95	Co-electrolysis of H ₂ O and CO ₂ in a solid oxide electrolysis cell with hierarchically structured porous electrodes. Journal of Materials Chemistry A, 2015, 3, 15913-15919.	5.2	41
96	High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+Î′–Co–Fe alloy hydrogen electrodes. International Journal of Hydrogen Energy, 2013, 38, 11202-11208.	3.8	39
97	Snâ€MoS ₂ @C Microspheres as a Sodiumâ€ŀon Battery Anode Material with High Capacity and Long Cycle Life. Chemistry - A European Journal, 2017, 23, 5051-5058.	1.7	39
98	Self‣tabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahighâ€Rate and Largeâ€Capacity Lithiumâ€Metal Anode. Angewandte Chemie, 2020, 132, 2071-2076.	1.6	39
99	P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries. Chemical Engineering Journal, 2020, 392, 123735.	6.6	39
100	N, S-codoped CNTs supported Co4S3 nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: An efficient catalyst for reversible oxygen electrocatalysis. Journal of Colloid and Interface Science, 2020, 560, 186-197.	5.0	38
101	Enhanced white light emission from GdAl3(BO3)4:Dy3+,Ce3+nanorods. Nanotechnology, 2007, 18, 145602.	1.3	35
102	Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst. Journal of Power Sources, 2014, 262, 421-428.	4.0	35
103	Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer. Electrochemistry Communications, 2010, 12, 1450-1452.	2.3	34
104	N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries. Frontiers in Chemistry, 2018, 6, 78.	1.8	34
105	Carbon Nanosheets Encapsulated NiSb Nanoparticles as Advanced Anode Materials for Lithiumâ€lon Batteries. Energy and Environmental Materials, 2020, 3, 186-191.	7.3	32
106	Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 404, 126446.	6.6	32
107	High performance intermediate temperature micro-tubular SOFCs with Ba0.9Co0.7Fe0.2Nb0.1O3â ^{~1} δ as cathode. International Journal of Hydrogen Energy, 2013, 38, 15348-15353.	3.8	31
108	Impact of Strain-Induced Changes in Defect Chemistry on Catalytic Activity of Nd ₂ NiO _{4+i} Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 36926-36932.	4.0	31

#	Article	IF	CITATIONS
109	Tailoring Submicron Cobblestone-Like Carbon-Free CoSe ₂ with High Energy Density for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9558-9567.	2.5	31
110	Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution. Applied Catalysis B: Environmental, 2021, 299, 120613.	10.8	31
111	Rational design of A-CNTs/KxMnO2 and Ti3C2Tx/MoO3 free-standing hybrid films for flexible asymmetric supercapacitor. Chemical Engineering Journal, 2022, 428, 131138.	6.6	31
112	Cooperative Energy Transfer and Frequency Upconversion in Yb3+–Tb3+ and Nd3+–Yb3+–Tb3+ Codoped GdAl3(BO3)4 Phosphors. Journal of Fluorescence, 2007, 17, 500-504.	1.3	30
113	Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode. Electrochimica Acta, 2010, 56, 80-84.	2.6	30
114	Characteristics of the Hydrogen Electrode in High Temperature Steam Electrolysis Process. Journal of the Electrochemical Society, 2011, 158, B1217.	1.3	30
115	Building Hierarchical Microcubes Composed of Oneâ€Dimensional CoSe ₂ @Nitrogenâ€Doped Carbon for Superior Sodium Ion Batteries. Chemistry - A European Journal, 2020, 26, 13716-13724.	1.7	29
116	In-situ exsolved FeRu alloy nanoparticles on Ruddlesden-Popper oxides for direct hydrocarbon fuel solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 21464-21472.	3.8	28
117	Effects of testing configurations and cell geometries on the performance of a SOFC: A modeling approach. International Journal of Hydrogen Energy, 2010, 35, 10495-10504.	3.8	27
118	Fe ₂ P-decorated N,P Codoped Carbon Synthesized via Direct Biological Recycling for Endurable Sulfur Encapsulation. ACS Central Science, 2020, 6, 1827-1834.	5.3	27
119	3D porous Fluorine-Doped NaTi2(PO4)3@C as High-Performance Sodium-Ion battery anode with broad temperature adaptability. Chemical Engineering Journal, 2022, 430, 132710.	6.6	27
120	Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 1543-1550.	4.0	26
121	Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation. Electrochimica Acta, 2017, 257, 146-154.	2.6	26
122	Exploration of VPO ₄ as a new anode material for sodium-ion batteries. Chemical Communications, 2017, 53, 12696-12699.	2.2	26
123	Enabling a highly reversible conversion reaction in a lithiated nano-SnO ₂ film coated with Al ₂ O ₃ by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 4374-4385.	5.2	26
124	Single Cobalt Atoms Decorated Nâ€doped Carbon Polyhedron Enabled Dendriteâ€Free Sodium Metal Anode. Small Methods, 2021, 5, e2100833.	4.6	25
125	Ni-polymer gels-derived hollow NiSb alloy confined in 3D interconnected carbon as superior sodium-ion battery anode. Electrochimica Acta, 2018, 269, 225-231.	2.6	23

Potassiumâ \in Ion Batteries: Surface Amorphization of Vanadium Dioxide (B) for Kâ \in Ion Battery (Adv. Energy) Tj ETQ $_{10.2}^{000}$ 0 rgBT/Overlock

#	Article	IF	CITATIONS
127	Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer. Journal of Power Sources, 2012, 201, 66-71.	4.0	22
128	Intermediate temperature micro-tubular SOFCs with enhanced performance and thermal stability. Electrochemistry Communications, 2013, 34, 231-234.	2.3	22
129	Investigation of A-site deficient Ba0.9Co0.7Fe0.2Nb0.1O3â~'î´ cathode for proton conducting electrolyte based solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 8431-8436.	3.8	21
130	N doped carbon coated multi-metals nanoparticles decorated perovskite as electrocatalyst for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2020, 399, 125779.	6.6	21
131	In-situ exsolved NiFe alloy nanoparticles on Pr0.8Sr1.2(NiFe)O4-Î′ for direct hydrocarbon fuel solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 29407-29416.	3.8	20
132	One-pot synthesis of SnS/C nanocomposites on carbon paper as a high-performance free-standing anode for lithium ion batteries. Journal of Alloys and Compounds, 2019, 779, 67-73.	2.8	19
133	Insight of K-deficient layered K MnO2 cathode for potassium-ions batteries. Journal of Energy Chemistry, 2022, 64, 335-343.	7.1	19
134	Three-dimensional N-doped graphene as anode material with superior cycle stability for sodium ion batteries. Materials Letters, 2017, 202, 123-126.	1.3	18
135	Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries. Frontiers in Chemistry, 2019, 7, 733.	1.8	18
136	Structural Insight into the Abnormal Capacity of a Co-Substituted Tunnel-Type Na _{0.44} MnO ₂ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47548-47555.	4.0	18
137	Synthesis and Application of Porous Sm0.2Ce0.8O1.9 Nanocrystal Aggregates. Journal of Physical Chemistry C, 2009, 113, 17262-17267.	1.5	17
138	Construction of heterostructured NiFe ₂ O ₄ -C nanorods by transition metal recycling from simulated electroplating sludge leaching solution for high performance lithium ion batteries. Nanoscale, 2020, 12, 13398-13406.	2.8	17
139	Understanding the Effect of Interplanar Space and Preintercalated Cations of Vanadate Cathode Materials on Potassium-Ion Battery Performance. ACS Applied Materials & Interfaces, 2021, 13, 7377-7388.	4.0	17
140	Nitrogen-doped carbon nanosheet coated multilayer graphite as stabilized anode material of potassium-ion batteries with high performances. Electrochimica Acta, 2021, 380, 138254.	2.6	17
141	Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Research, 2022, 15, 8991-8999.	5.8	17
142	Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries. Nanomaterials, 2018, 8, 183.	1.9	16
143	Construction of 3D porous CeO2 ceramic hosts with enhanced lithiophilicity for dendrite-free lithium metal anode. Journal of Power Sources, 2021, 484, 229253.	4.0	15
144	Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method. Rare Metals, 2021, 40, 31-39.	3.6	13

9

#	ARTICLE	IF	CITATIONS
145	Suppressing the interlayer-gliding of layered P3-type K0.5Mn0.7Co0.2Fe0.1O2 cathode materials on electrochemical potassium-ion storage. Applied Physics Reviews, 2021, 8, .	5.5	13
146	Synthesis and Spectroscopic Properties of GdAl3(BO3)4 Poly-crystals Codoped with Yb3+ and Eu3+. Journal of Fluorescence, 2009, 19, 105-109.	1.3	11
147	Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis. Electrochimica Acta, 2021, 384, 138299.	2.6	11
148	Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries. Journal of Colloid and Interface Science, 2021, 604, 157-167.	5.0	11
149	Three-dimensional nitrogen–sulfur codoped layered porous carbon nanosheets with sulfur-regulated nitrogen content as a high-performance anode material for potassium-ion batteries. Dalton Transactions, 2020, 49, 5108-5120.	1.6	9
150	Heterostructured Ni3S4/Co9S8 Encapsulated in Nitrogen-Doped Carbon Nanocubes for Advanced Potassium Storage. Chemical Engineering Journal, 2022, 446, 136829.	6.6	8
151	High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3â^Î^ as cathode. Ceramics International, 2016, 42, 19397-19401.	2.3	7
152	Novel Micro-Tubular High Temperature Solid Oxide Electrolysis Cells. ECS Transactions, 2011, 35, 2987-2995.	0.3	6
153	Na+-storage properties derived from a high pseudocapacitive behavior for nitrogen-doped porous carbon anode. Materials Letters, 2020, 261, 127064.	1.3	5
154	The Microstructure and Conductivity Evolution of Plasma-Sprayed (Mn, Co)3O4 Spinel Coatings during Conductivity Measurements at Elevated Temperature. Coatings, 2021, 11, 533.	1.2	5
155	Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries. Materials, 2022, 15, 4249.	1.3	5
156	Highly Conductive Mn-Co Spinel Powder Prepared by Cu-Doping Used for Interconnect Protection of SOFC. Coatings, 2021, 11, 1298.	1.2	4
157	Constructing oxygen-deficient V2O3@C nanospheres for high performance potassium ion batteries. Chinese Chemical Letters, 2023, 34, 107372.	4.8	4
158	Sodium Ion Batteries: A New rGOâ€Overcoated Sb ₂ Se ₃ Nanorods Anode for Na ⁺ Battery: In Situ Xâ€Ray Diffraction Study on a Live Sodiation/Desodiation Process (Adv.) Tj ETQ	q07080 rgE	BT \$Overlock 1
159	Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 503-509.	2.2	2
160	O-Doping Configurations Reduce the Adsorption Energy Barrier of K-lons to Improve the Electrochemical Performance of Biomass-Derived Carbon. Micromachines, 2022, 13, 806.	1.4	1
161	Fabrication and in-Situ Characterization of NbS2 Nanosheets As the Anode Material for Sodium Ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0