
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934665/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Shear banding-induced ã€^c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites. Journal of Materials Science and Technology, 2022, 110, 260-268.                                                                        | 5.6 | 9         |
| 2  | Dislocation avalanches are like earthquakes on the micron scale. Nature Communications, 2022, 13, 1975.                                                                                                                                                           | 5.8 | 34        |
| 3  | Line profile analysis and rocking curve evaluation of 3D diffraction data reveal a strain softening mechanism. Acta Materialia, 2022, 233, 117993.                                                                                                                | 3.8 | 1         |
| 4  | Influence of high-pressure torsion on microstructure, hardness and shear strength of AM60<br>magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2021, 799, 140158.                           | 2.6 | 18        |
| 5  | Interaction of Migrating Twin Boundaries with Obstacles in Magnesium. Metals, 2021, 11, 154.                                                                                                                                                                      | 1.0 | 3         |
| 6  | On the dynamics of twinning in magnesium micropillars. Materials and Design, 2021, 203, 109563.                                                                                                                                                                   | 3.3 | 10        |
| 7  | Influence of high pressure torsion on microstructure evolution and mechanical properties of<br>AZ80/SiC magnesium matrix composites. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2021, 826, 141916.    | 2.6 | 22        |
| 8  | Unraveling the effect of deformation-induced phase transformation on microstructure and<br>micro-texture evolution of a multi-axially forged Mg-Gd-Y-Zn-Zr alloy containing the LPSO phase.<br>Journal of Materials Research and Technology, 2021, 15, 2088-2101. | 2.6 | 16        |
| 9  | The temperature effect on the plastic deformation of the Mg88Zn7Y5 alloy with LPSO phase studied by in-situ synchrotron radiation diffraction. Intermetallics, 2021, 138, 107321.                                                                                 | 1.8 | 10        |
| 10 | Influence of Volume Fraction of Long-Period Stacking Ordered Structure Phase on the Deformation Processes during Cyclic Deformation of Mg-Y-Zn Alloys. Crystals, 2021, 11, 11.                                                                                    | 1.0 | 9         |
| 11 | Study of twinning in texture-free cast magnesium using acoustic emission technique. Metallic<br>Materials, 2021, 51, 269-273.                                                                                                                                     | 0.2 | 1         |
| 12 | Revealing the Microstructural Aspects of the Corrosion Dynamics in Rapidly Solidified Mg-Zn-Y Alloys<br>Using the Acoustic Emission Technique. Materials, 2021, 14, 7828.                                                                                         | 1.3 | 3         |
| 13 | Influence of temperature of ECAP processing on the microstructure and microhardness of as-cast AX41 alloy. Journal of Materials Science, 2020, 55, 3118-3129.                                                                                                     | 1.7 | 11        |
| 14 | A new insight into LPSO transformation during multi-axial forging in Mg-Gd-Y-Zn-Zr alloy. Materials<br>Letters, 2020, 269, 127625.                                                                                                                                | 1.3 | 16        |
| 15 | A phenomenological model of twinning-mediated strain hardening. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139194.                                                                         | 2.6 | 9         |
| 16 | Optimization of the Mechanical Performance of Titanium for Biomedical Applications by Advanced,<br>High-Gain SPD Technology. Crystals, 2020, 10, 422.                                                                                                             | 1.0 | 6         |
| 17 | Hot deformation of Mg-Y-Zn alloy with a low content of the LPSO phase studied by in-situ synchrotron radiation diffraction. Journal of Magnesium and Alloys, 2020, 8, 199-209.                                                                                    | 5.5 | 24        |
| 18 | The Deformation of Expanded Clay Syntactic Foams During Compression Characterized by Acoustic<br>Emission. Minerals, Metals and Materials Series, 2020, , 107-114.                                                                                                | 0.3 | 4         |

KRISTIAN MATHIS

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluation of X-ray Bragg peak profiles with the variance method obtained by <i>in situ</i> measurement on Mg–Al alloys. Journal of Applied Crystallography, 2020, 53, 360-368.                                                                          | 1.9 | 2         |
| 20 | Mechanical and biocorrosive properties of magnesium-aluminum alloy scaffold for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 213-224.                                                                  | 1.5 | 30        |
| 21 | Optimization of mechanical properties of dilute Mg-Zn-Y alloys prepared by rapid solidification.<br>Materials and Design, 2019, 181, 107984.                                                                                                             | 3.3 | 28        |
| 22 | Effect of precipitation in the compressive behavior of high strength Mg-Gd-Y-Zn extruded alloy.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2019, 768, 138452.                             | 2.6 | 13        |
| 23 | In-situ Investigation of the Microstructure Evolution in Long-Period-Stacking-Ordered (LPSO)<br>Magnesium Alloys as a Function of the Temperature. Frontiers in Materials, 2019, 6, .                                                                    | 1.2 | 6         |
| 24 | Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study.<br>Journal of Alloys and Compounds, 2019, 786, 779-790.                                                                                            | 2.8 | 25        |
| 25 | Influence of the solute concentration on twinning-detwinning process in Mg-Al alloys. Procedia<br>Structural Integrity, 2019, 23, 51-56.                                                                                                                 | 0.3 | Ο         |
| 26 | Damage Characterization during Compression in a Perlite-Aluminum Syntactic Foam. Materials, 2019, 12, 3342.                                                                                                                                              | 1.3 | 7         |
| 27 | In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30.<br>Materials, 2019, 12, 3935.                                                                                                                            | 1.3 | 2         |
| 28 | Type and density of dislocations in a plastically deformed long-period stacking ordered magnesium alloy. Journal of Alloys and Compounds, 2019, 771, 629-635.                                                                                            | 2.8 | 8         |
| 29 | Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study. Materials Science and Engineering C, 2019, 97, 367-376.                                                                                        | 3.8 | 10        |
| 30 | Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. Journal of Materials Science, 2019, 54, 3469-3484.                                                                                       | 1.7 | 23        |
| 31 | Investigation of the Evolution of the Microstructure in the Directionally Solidified Long-Period<br>Stacking-Ordered (LPSO) Magnesium Alloy as a Function of the Temperature. Minerals, Metals and<br>Materials Series, 2019, , 33-36.                   | 0.3 | 1         |
| 32 | Thermo-mechanical Processing of EZK Alloys in a Synchrotron Radiation Beam. Minerals, Metals and Materials Series, 2019, , 297-303.                                                                                                                      | 0.3 | 0         |
| 33 | Acoustic Emission Study of High Temperature Deformation of Mg–Zn–Y Alloys with LPSO Phase.<br>Minerals, Metals and Materials Series, 2018, , 203-208.                                                                                                    | 0.3 | Ο         |
| 34 | Evolution of the Dislocation Structure During Compression in a Mg–Zn–Y Alloy with Long Period<br>Stacking Ordered Structure. Minerals, Metals and Materials Series, 2018, , 385-389.                                                                     | 0.3 | 0         |
| 35 | Influence of quasicrystal I-phase on twinning of extruded Mg-Zn-Y alloys under compression. Acta<br>Materialia, 2018, 151, 271-281.                                                                                                                      | 3.8 | 32        |
| 36 | Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-Y-Zn alloys containing LPSO phase under different loading conditions. International Journal of Plasticity, 2018, 106, 107-128. | 4.1 | 76        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 731, 438-445.          | 2.6 | 18        |
| 38 | Characterization of Microstructure and Mechanical Properties of Mg–Y–Zn Alloys with Respect to<br>Different Content of LPSO Phase. Advanced Engineering Materials, 2018, 20, 1700396.                                                     | 1.6 | 15        |
| 39 | Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires.<br>Materials, 2018, 11, 2522.                                                                                                          | 1.3 | 15        |
| 40 | Characterization of the Microstructure, Local Macro-Texture and Residual Stress Field of<br>Commercially Pure Titanium Grade 2 Prepared by CONFORM ECAP. Metals, 2018, 8, 1000.                                                           | 1.0 | 7         |
| 41 | Micro-Tensile Behavior of Mg-Al-Zn Alloy Processed by Equal Channel Angular Pressing (ECAP).<br>Materials, 2018, 11, 1644.                                                                                                                | 1.3 | 19        |
| 42 | Investigation of the Microstructure Evolution and Deformation Mechanisms of a Mg-Zn-Zr-RE<br>Twin-Roll-Cast Magnesium Sheet by In-Situ Experimental Techniques. Materials, 2018, 11, 200.                                                 | 1.3 | 8         |
| 43 | Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles. Journal of<br>Materials Engineering and Performance, 2018, 27, 3112-3121.                                                                       | 1.2 | 5         |
| 44 | Characterization of Deformation Mechanisms in Mg Alloys by Advanced Acoustic Emission Methods.<br>Metals, 2018, 8, 644.                                                                                                                   | 1.0 | 16        |
| 45 | Characterization of Active Deformation Mechanisms in Mg Alloys with LPSO Phase. Acta Physica<br>Polonica A, 2018, 134, 815-819.                                                                                                           | 0.2 | 3         |
| 46 | Deformation Behavior of Mg-alloy-based Composites at Different Temperatures Studied by Neutron<br>Diffraction. Acta Physica Polonica A, 2018, 134, 881-886.                                                                               | 0.2 | 1         |
| 47 | Twinning Evolution in Magnesium Alloys under Biaxial Loading. Acta Physica Polonica A, 2018, 134,<br>853-856.                                                                                                                             | 0.2 | 1         |
| 48 | Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron<br>diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2017, 685, 284-293. | 2.6 | 10        |
| 49 | Evolution of dislocation density during compression of a Mg-Zn-Y alloy with long period stacking ordered structure. Materials Letters, 2017, 190, 86-89.                                                                                  | 1.3 | 12        |
| 50 | Occurrence of the Portevin Le-Châtelier effect in open-cell microcellular Al-2wt% Mg. Scripta<br>Materialia, 2017, 132, 13-16.                                                                                                            | 2.6 | 1         |
| 51 | Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. Journal of Alloys and Compounds, 2017, 705, 273-282.                                             | 2.8 | 48        |
| 52 | In Situ Investigation of Deformation Mechanisms in Mg–Zn–Y Magnesium Alloy with LPSO Phase by<br>Diffraction Methods and Acoustic Emission. Minerals, Metals and Materials Series, 2017, , 625-629.                                       | 0.3 | 0         |
| 53 | Evolution of twinning in extruded AZ31 alloy with bimodal grain structure. Materials Characterization, 2017, 126, 116-124.                                                                                                                | 1.9 | 12        |
| 54 | Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Materials Characterization, 2017, 123, 282-293.                                                 | 1.9 | 63        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Materialia, 2017, 130, 319-328.                                                                                           | 3.8 | 50        |
| 56 | Micron-Scale Deformation: A Coupled <i>In Situ</i> Study of Strain Bursts and Acoustic Emission.<br>Microscopy and Microanalysis, 2017, 23, 1076-1081.                                                                                 | 0.2 | 15        |
| 57 | The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix<br>Syntactic Foams during Compression. Materials, 2017, 10, 196.                                                                            | 1.3 | 21        |
| 58 | Effect of Extrusion Ratio on Microstructure and Resulting Mechanical Properties of Mg Alloys with LPSO Phase. Minerals, Metals and Materials Series, 2017, , 29-34.                                                                    | 0.3 | 5         |
| 59 | Neutron Diffraction and Acoustic Emission Measurement During Loading and Unloading of<br>Magnesium Aluminium Binary Alloys. Minerals, Metals and Materials Series, 2017, , 543-546.                                                    | 0.3 | 0         |
| 60 | In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Materials Science and Engineering C, 2016, 65, 59-69.                                                                                                           | 3.8 | 39        |
| 61 | Effect of reinforcing shape on twinning in extruded magnesium matrix composites. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 48-53.                              | 2.6 | 14        |
| 62 | Characterization of the Acoustic Emission Response and Mechanical Properties of Mg Alloy with LPSO<br>Phase. Materials Science Forum, 2016, 879, 762-766.                                                                              | 0.3 | 4         |
| 63 | Acoustic Emission as a Tool for Exploring Deformation Mechanisms in Magnesium and Its Alloys In Situ. Jom, 2016, 68, 3057-3062.                                                                                                        | 0.9 | 17        |
| 64 | On the limits of acoustic emission detectability for twinning. Materials Letters, 2016, 183, 417-419.                                                                                                                                  | 1.3 | 45        |
| 65 | Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of Mg Zn Zr alloy. Journal of Alloys and Compounds, 2016, 680, 623-632.                                                    | 2.8 | 13        |
| 66 | Monitoring the failure mechanisms in metal matrix syntactic foams during compression by acoustic emission. Materials Letters, 2016, 173, 31-34.                                                                                        | 1.3 | 30        |
| 67 | The Use of Acoustic Emission and Neutron Diffraction to Reveal the Active Deformation Mechanisms in Polycrystalline Magnesium and Comparison to Theoretical Modeling. , 2016, , 213-216.                                               |     | 0         |
| 68 | Neutron diffraction study of the deformation behavior of Mg-alloy-based composites. Acta<br>Crystallographica Section A: Foundations and Advances, 2016, 72, s302-s302.                                                                | 0.0 | 0         |
| 69 | Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured<br>magnesium polycrystals – Comparison of experimental and modeling results. International Journal of<br>Plasticity, 2015, 72, 127-150. | 4.1 | 86        |
| 70 | In situ investigation of deformation mechanisms in magnesium-based metal matrix composites. Metals<br>and Materials International, 2015, 21, 652-658.                                                                                  | 1.8 | 6         |
| 71 | Investigation of the dependence of deformation mechanisms on solute content in polycrystalline<br>Mg–Al magnesium alloys by neutron diffraction and acoustic emission. Journal of Alloys and<br>Compounds, 2015, 642, 185-191.         | 2.8 | 24        |
| 72 | Temperature dependence of twinning activity in random textured cast magnesium. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627,<br>333-335.                           | 2.6 | 6         |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of the fiber orientation on the deformation mechanisms of magnesium-alloy based composite.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 643, 25-31.                                            | 2.6 | 9         |
| 74 | Effect of Loading Mode on the Evolution of the Dislocation Structure in Magnesium. Acta Physica<br>Polonica A, 2015, 128, 700-704.                                                                                                                                       | 0.2 | 4         |
| 75 | Neutron Diffraction Study and Deformation Behavior of a Composite Based Mg Alloy Reinforced by<br>Short Saffil Fibers. Acta Physica Polonica A, 2015, 128, 758-761.                                                                                                      | 0.2 | 2         |
| 76 | Twinning Evolution as a Function of Loading Direction in Magnesium. Acta Physica Polonica A, 2015, 128, 762-765.                                                                                                                                                         | 0.2 | 9         |
| 77 | Microstructure and Mechanical Properties of Severely Deformed AX41 Magnesium Alloy. Acta Physica<br>Polonica A, 2015, 128, 768-771.                                                                                                                                      | 0.2 | 2         |
| 78 | Comparison of the microstructure and the mechanical properties of AX41 magnesium alloy processed by EX-ECAP via three different routes A, Bc and C. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012058.                                          | 0.3 | 3         |
| 79 | Neutron Diffraction and Acoustic Emission Study of Mg-Al-Sr Alloy Reinforced with Short<br>Saffil <sup>®</sup> Fibers Deformed in Compression. Materials Science Forum, 2014, 777, 92-98.                                                                                | 0.3 | 2         |
| 80 | Study of the loading mode dependence of the twinning in random textured cast magnesium by<br>acoustic emission and neutron diffraction methods. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2014, 602, 25-32. | 2.6 | 77        |
| 81 | Plastic Properties of a Mg-Al-Ca Alloy Reinforced with Short Saffil Fibers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 29-35.                                                                                      | 1.1 | 7         |
| 82 | Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595,<br>165-172.                                                        | 2.6 | 11        |
| 83 | Statistical analysis of acoustic emission events in torsional deformation of a Vitreloy bulk metallic glass. Acta Materialia, 2014, 70, 113-122.                                                                                                                         | 3.8 | 13        |
| 84 | Hardening and Softening Processes in an AJ51 Magnesium Alloy Reinforced with Short Saffil Fibres. , 2014, , 435-440.                                                                                                                                                     |     | 2         |
| 85 | Acoustic emission study of Mg–Al–Sr alloy reinforced with short Saffil® fibers deformed in<br>compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2013, 575, 1-5.                                        | 2.6 | 8         |
| 86 | Stages in room temperature torsional deformation of a Vitreloy bulk metallic glass. Journal of Alloys and Compounds, 2013, 577, 25-29.                                                                                                                                   | 2.8 | 11        |
| 87 | Hydrogen Softening in the Thin Plate of Microcrystalline 316L Stainless Steel. Steel Research<br>International, 2013, 84, 812-817.                                                                                                                                       | 1.0 | 8         |
| 88 | Investigation of Twinning Activity in Magnesium Using Advanced <i>In Situ</i> Methods. Materials<br>Science Forum, 2013, 765, 532-536.                                                                                                                                   | 0.3 | 2         |
| 89 | Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Physical Review E, 2013, 88, 042402.                                                                                                                  | 0.8 | 47        |
| 90 | <i>In-situ</i> neutron diffraction and acoustic emission investigation of twinning activity in magnesium. Journal of Physics: Conference Series, 2012, 340, 012096.                                                                                                      | 0.3 | 9         |

KRISTIAN MATHIS

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of temperature on mechanical properties of continuously cast AZ31 magnesium alloy. Metallic<br>Materials, 2012, 50, 139-146.                                                                                                    | 0.2 | 0         |
| 92  | Acoustic-Emission Study of Intermittency of Plastic Flow during Twinning and Dislocation Glide. Acta Physica Polonica A, 2012, 122, 430-434.                                                                                           | 0.2 | 10        |
| 93  | Acoustic emission monitoring of slow strain rate tensile tests of 304L stainless steel in supercritical water environment. Corrosion Science, 2011, 53, 59-63.                                                                         | 3.0 | 30        |
| 94  | Structure and mechanical behaviour of interstitial-free steel processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2011, 509, 3522-3525.                                                                      | 2.8 | 39        |
| 95  | Internal stress and thermally activated dislocation motion in an AZ63 magnesium alloy. Materials<br>Chemistry and Physics, 2011, 130, 1146-1150.                                                                                       | 2.0 | 33        |
| 96  | Investigation of tension–compression asymmetry of magnesium by use of the acoustic emission<br>technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2011, 528, 5904-5907. | 2.6 | 51        |
| 97  | Inhomogeneous evolution of microstructure in AZ91 Mg-alloy during high temperature equal-channel angular pressing. Journal of Alloys and Compounds, 2010, 492, 166-172.                                                                | 2.8 | 26        |
| 98  | Microstructural evolution of equal-channel angular pressed interstitial-free steel. International<br>Journal of Materials Research, 2009, 100, 834-837.                                                                                | 0.1 | 5         |
| 99  | Microstructural characterization of a fine-grained ultra low carbon steel. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 248-252.                                  | 2.6 | 12        |
| 100 | Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique.<br>Acta Materialia, 2006, 54, 5361-5366.                                                                                            | 3.8 | 64        |
| 101 | Microstructure of severely deformed metals from X-ray line profile analysis. , 2006, , 93-98.                                                                                                                                          |     | 0         |
| 102 | Mechanical Properties of AZ91 Alloy after Equal Channel Angular Pressing. , 2005, , 190-193.                                                                                                                                           |     | 0         |
| 103 | Evolution of the statistical properties of dislocation ensembles. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 206-209.                                       | 2.6 | 3         |
| 104 | Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. Journal of Alloys and Compounds, 2005, 394, 194-199.                                                                              | 2.8 | 187       |
| 105 | Investigation of some magnesium alloys by use of the acoustic emission technique. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389,<br>331-335.                    | 2.6 | 21        |
| 106 | The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Materialia, 2004, 52, 2889-2894.                                                              | 3.8 | 202       |
| 107 | Modeling of hardening and softening processes in Mg alloys. Journal of Alloys and Compounds, 2004, 378, 176-179.                                                                                                                       | 2.8 | 41        |
| 108 | Hardening and softening in deformed magnesium alloys. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2002, 324, 141-144.                                                       | 2.6 | 48        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Thermally activated processes in microcrystalline Mg. Scripta Materialia, 2000, 42, 1095-1100.                                                                                         | 2.6 | 24        |
| 110 | Thermally Activated Dislocation Motion in an AS21 Alloy and Alloy Reinforced with Short Ceramic Fibres Studied at Elevated Temperatures. Key Engineering Materials, 0, 592-593, 71-74. | 0.4 | 0         |
| 111 | Influence of the Loading Path on the Deformation Mechanisms of Magnesium Alloys. Solid State Phenomena, 0, 258, 427-431.                                                               | 0.3 | Ο         |