Kristian Mathis

List of Publications by Year in descending order

[^0]

1 Shear banding-induced ã $\ell^{\wedge} c+a a ̃ \notin \%$ slip enables unprecedented strength-ductility combination of laminated metallic composites. Journal of Materials Science and Technology, 2022, 110, 260-268.

Dislocation avalanches are like earthquakes on the micron scale. Nature Communications, 2022, 13, 1975.

Line profile analysis and rocking curve evaluation of 3D diffraction data reveal a strain softening mechanism. Acta Materialia, 2022, 233, 117993.

Influence of high-pressure torsion on microstructure, hardness and shear strength of AM60 4 magnesium alloy. Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140158.
$5 \quad$ Interaction of Migrating Twin Boundaries with Obstacles in Magnesium. Metals, 2021, 11, 154.
1.0

6 On the dynamics of twinning in magnesium micropillars. Materials and Design, 2021, 203, 109563.
3.3

10
Influence of high pressure torsion on microstructure evolution and mechanical properties of
7 AZ80/SiC magnesium matrix composites. Materials Science \& Engineering A: Structural Materials: 2.6 22
Properties, Microstructure and Processing, 2021, 826, 141916.
Unraveling the effect of deformation-induced phase transformation on microstructure and
8 micro-texture evolution of a multi-axially forged $\mathrm{Mg}-\mathrm{Gd}-\mathrm{Y}-\mathrm{Zn}-\mathrm{Zr}$ alloy containing the LPSO phase. 2.6 16Journal of Materials Research and Technology, 2021, 15, 2088-2101.The temperature effect on the plastic deformation of the Mg88Zn7Y5 alloy with LPSO phase studied by9 in-situ synchrotron radiation diffraction. Intermetallics, 2021, 138, 107321.Influence of Volume Fraction of Long-Period Stacking Ordered Structure Phase on the Deformation

A new insight into LPSO transformation during multi-axial forging in Mg-Gd-Y-Zn-Zr alloy. Materials

Evaluation of X-ray Bragg peak profiles with the variance method obtained by <i> in situ</i>
measurement on Mgấ"Al alloys. Journal of Applied Crystallography, 2020, 53, 360-368.
Mechanical and biocorrosive properties of magnesium-aluminum alloy scaffold for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 213-224.
1.5

Optimization of mechanical properties of dilute $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Y}$ alloys prepared by rapid solidification. Materials and Design, 2019, 181, 107984.

Effect of precipitation in the compressive behavior of high strength Mg-Gd-Y-Zn extruded alloy.
22 Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 768, 138452.

23 In-situ Investigation of the Microstructure Evolution in Long-Period-Stacking-Ordered (LPSO)
Magnesium Alloys as a Function of the Temperature. Frontiers in Materials, 2019, 6, .

Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study. Journal of Alloys and Compounds, 2019, 786, 779-790.

Influence of the solute concentration on twinning-detwinning process in Mg-Al alloys. Procedia
Structural Integrity, 2019, 23, 51-56.

Damage Characterization during Compression in a Perlite-Aluminum Syntactic Foam. Materials, 2019, 12, 3342.

In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30.
Materials, 2019, 12, 3935.

Type and density of dislocations in a plastically deformed long-period stacking ordered magnesium alloy. Journal of Alloys and Compounds, 2019, 771, 629-635.

> Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility
> study. Materials Science and Engineering C, 2019, 97, 367-376.

Influence of the initial state on the microstructure and mechanical properties of AX41 alloy
30 processed by ECAP. Journal of Materials Science, 2019, 54, 3469-3484.
1.7

23

Investigation of the Evolution of the Microstructure in the Directionally Solidified Long-Period
31 Stacking-Ordered (LPSO) Magnesium Alloy as a Function of the Temperature. Minerals, Metals and
0.3

1
Materials Series, 2019, 33-36.
Thermo-mechanical Processing of EZK Alloys in a Synchrotron Radiation Beam. Minerals, Metals and Materials Series, 2019, , 297-303.

Acoustic Emission Study of High Temperature Deformation of Mgâ€"Znâ€"Y Alloys with LPSO Phase. Minerals, Metals and Materials Series, 2018, , 203-208.

Evolution of the Dislocation Structure During Compression in a Mgâ€"Znâ€"Y Alloy with Long Period Stacking Ordered Structure. Minerals, Metals and Materials Series, 2018, , 385-389.
Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures.
37 Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and
Processing $2018,731,438-445$.
55 Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured
magnesium. Acta Materialia, 2017, 130, 319-328.
Effect of reinforcing shape on twinning in extruded magnesium matrix composites. Materials Science
\& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 48-53. 61$2.6 \quad 14$62 Characterization of the Acoustic Emission Response and Mechanical Properties of Mg Alloy with LPSOPhase. Materials Science Forum, 2016, 879, 762-766.
Acoustic Emission as a Tool for Exploring Deformation Mechanisms in Magnesium and Its Alloys InSitu. Jom, 2016, 68, 3057-3062.

Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured

In situ investigation of deformation mechanisms in magnesium-based metal matrix composites. Metals

[^1]2.8

24

Temperature dependence of twinning activity in random textured cast magnesium. Materials Science
Effect of the fiber orientation on the deformation mechanisms of magnesium-alloy based composite.
73 Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and
Processing, 2015, 643, 25-31.

74 Effect of Loading Mode on the Evolution of the Dislocation Structure in Magnesium. Acta Physica

Comparison of the microstructure and the mechanical properties of AX41 magnesium alloy processed
78 by EX-ECAP via three different routes A, Bc and C. IOP Conference Series: Materials Science and
79 Neutron Diffraction and Acoustic Emission Study of Mg-Al-Sr Alloy Reinforced with Short Saffil<sup> $\hat{A}^{@}<\mid$ sup $>$ Fibers Deformed in Compression. Materials Science Forum, 2014, 777, 92-98.Study of the loading mode dependence of the twinning in random textured cast magnesium by80 acoustic emission and neutron diffraction methods. Materials Science \& Engineering A:2.6Structural Materials: Properties, Microstructure and Processing, 2014, 602, 25-32.
81 Plastic Properties of a Mg-Al-Ca Alloy Reinforced with Short Saffil Fibers. Metallurgical and
Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 29-35.
Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures. Materials Science 82 \& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 2.6 165-172.
Statistical analysis of acoustic emission ev
glass. Acta Materialia, 2014, 70, 113-122.3.813

13

Hardening and Softening Processes in an AJ51 Magnesium Alloy Reinforced with Short Saffil Fibres.,
Acoustic emission study of Mgâ $€^{\text {" }} \mathrm{Alâ} €^{\text {" }} \mathrm{Sr}$ alloy reinforced with short Saffil $\hat{A} ®$ fibers deformed in
compression. Materials Science \& Engineering A: Structural Materials: Properties, Microstructure
and Processing, 2013, 575, 1-5.

86 Stages in room temperature torsional deformation of a Vitreloy bulk metallic glass. Journal of Alloys
Effect of temperature on mechanical properties of continuously cast AZ31 magnesium alloy. Metallic
Materials, $2012,50,139-146$.

Investigation of tensionâ€"compression asymmetry of magnesium by use of the acoustic emission 96 technique. Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5904-5907.97 Inhomogeneous evolution of microstructure in AZ91 Mg-alloy during high temperature equal-channelangular pressing. Journal of Alloys and Compounds, 2010, 492, 166-172.
$2.8 \quad 26$

98 Microstructural evolution of equal-channel angular pressed interstitial-free steel. International Journal of Materials Research, 2009, 100, 834-837.
0.1

5

```
99 Microstructural characterization of a fine-grained ultra low carbon steel. Materials Science \&amp;
Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 248-252.
```

Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique.
Acta Materialia, 2006, 54, 5361-5366.
3.8

64

101 Microstructure of severely deformed metals from X-ray line profile analysis. , 2006, , 93-98.

102 Mechanical Properties of AZ91 Alloy after Equal Channel Angular Pressing. , 2005, , 190-193.

The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Materialia, 2004, 52, 2889-2894.

[^0]: Source: https:/|exaly.com/author-pdf/3934665/publications.pdf
 Version: 2024-02-01

[^1]: Investigation of the dependence of deformation mechanisms on solute content in polycrystalline
 $71 \quad$ Mgấ "Al magnesium alloys by neutron diffraction and acoustic emission. Journal of Alloys and
 Compounds, 2015, 642, 185-191.

