Vic Narry Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934275/publications.pdf Version: 2024-02-01

VIC NADDY KIM

#	Article	IF	CITATIONS
1	The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425, 415-419.	13.7	4,463
2	Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15, 509-524.	16.1	4,396
3	Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 2009, 10, 126-139.	16.1	2,885
4	MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005, 6, 376-385.	16.1	2,256
5	MicroRNA maturation: stepwise processing and subcellular localization. EMBO Journal, 2002, 21, 4663-4670.	3.5	1,898
6	The Architecture of SARS-CoV-2 Transcriptome. Cell, 2020, 181, 914-921.e10.	13.5	1,759
7	Messenger-RNA-binding proteins and the messages they carry. Nature Reviews Molecular Cell Biology, 2002, 3, 195-205.	16.1	1,245
8	Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 2004, 270, 488-498.	0.9	914
9	Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA. Molecular Cell, 2008, 32, 276-284.	4.5	885
10	Genomics of microRNA. Trends in Genetics, 2006, 22, 165-173.	2.9	835
11	TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell, 2009, 138, 696-708.	13.5	730
12	miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nature Structural and Molecular Biology, 2009, 16, 23-29.	3.6	597
13	Dicer recognizes the $5\hat{a}\in^2$ end of RNA for efficient and accurate processing. Nature, 2011, 475, 201-205.	13.7	444
14	TAIL-seq: Genome-wide Determination of Poly(A) Tail Length and 3′ End Modifications. Molecular Cell, 2014, 53, 1044-1052.	4.5	402
15	Re-evaluation of the roles of <i>DROSHA</i> , <i>Exportin 5</i> , and <i>DICER</i> in microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1881-9.	3.3	367
16	Functional Anatomy of the Human Microprocessor. Cell, 2015, 161, 1374-1387.	13.5	315
17	Small RNAs: classification, biogenesis, and function. Molecules and Cells, 2005, 19, 1-15.	1.0	289
18	Emerging Roles of RNA Modification: m6A and U-Tail. Cell, 2014, 158, 980-987.	13.5	272

VIC NARRY KIM

#	Article	IF	CITATIONS
19	Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs. Cell, 2012, 151, 521-532.	13.5	266
20	Uridylation by TUT4 and TUT7 Marks mRNA for Degradation. Cell, 2014, 159, 1365-1376.	13.5	243
21	Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes and Development, 2006, 20, 1993-1997.	2.7	234
22	MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends in Cell Biology, 2004, 14, 156-159.	3.6	228
23	Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Research, 2006, 34, 4622-4629.	6.5	224
24	LIN28A Is a Suppressor of ER-Associated Translation in Embryonic Stem Cells. Cell, 2012, 151, 765-777.	13.5	208
25	Structure of Human DROSHA. Cell, 2016, 164, 81-90.	13.5	187
26	PKR Senses Nuclear and Mitochondrial Signals by Interacting with Endogenous Double-Stranded RNAs. Molecular Cell, 2018, 71, 1051-1063.e6.	4.5	156
27	PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay. Molecular Cell, 2018, 70, 1081-1088.e5.	4.5	154
28	Modifications of Small RNAs and Their Associated Proteins. Cell, 2010, 143, 703-709.	13.5	151
29	mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes and Development, 2016, 30, 1671-1682.	2.7	146
30	Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Molecular Cell, 2016, 62, 462-471.	4.5	144
31	Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 2018, 361, 701-704.	6.0	112
32	The SARS-CoV-2 RNA interactome. Molecular Cell, 2021, 81, 2838-2850.e6.	4.5	109
33	PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator. Genes and Development, 2014, 28, 1310-1322.	2.7	107
34	Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Molecular Cell, 2017, 66, 258-269.e5.	4.5	106
35	<scp>TUT</scp> 7 controls the fate of precursor micro <scp>RNA</scp> s by using three different uridylation mechanisms. EMBO Journal, 2015, 34, 1801-1815.	3.5	97
36	Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Science Translational Medicine, 2019, 11, .	5.8	96

VIC NARRY KIM

#	Article	IF	CITATIONS
37	Deletion of Human tarbp2 Reveals Cellular MicroRNA Targets and Cell-Cycle Function of TRBP. Cell Reports, 2014, 9, 1061-1074.	2.9	95
38	Adenylation of Maternally Inherited MicroRNAs by Wispy. Molecular Cell, 2014, 56, 696-707.	4.5	87
39	Terminal Uridylyltransferases Execute Programmed Clearance of Maternal Transcriptome in Vertebrate Embryos. Molecular Cell, 2018, 70, 72-82.e7.	4.5	87
40	A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nature Reviews Molecular Cell Biology, 2020, 21, 542-556.	16.1	83
41	Sorting Out Small RNAs. Cell, 2008, 133, 25-26.	13.5	73
42	Bias-minimized quantification of microRNA reveals widespread alternative processing and 3′ end modification. Nucleic Acids Research, 2019, 47, 2630-2640.	6.5	72
43	Singleâ€molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. EMBO Reports, 2011, 12, 690-696.	2.0	70
44	Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Molecular Cell, 2019, 73, 505-518.e5.	4.5	66
45	PARN and TOE1 Constitute a 3′ End Maturation Module for Nuclear Non-coding RNAs. Cell Reports, 2018, 23, 888-898.	2.9	55
46	Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nature Communications, 2020, 11, 6033.	5.8	55
47	The regulatory impact of RNA-binding proteins on microRNA targeting. Nature Communications, 2021, 12, 5057.	5.8	54
48	A Mechanism for microRNA Arm Switching Regulated by Uridylation. Molecular Cell, 2020, 78, 1224-1236.e5.	4.5	52
49	RNA Interference in Functional Genomics and Medicine. Journal of Korean Medical Science, 2003, 18, 309.	1.1	48
50	Viral hijacking of the TENT4–ZCCHC14 complex protects viral RNAs via mixed tailing. Nature Structural and Molecular Biology, 2020, 27, 581-588.	3.6	42
51	A quantitative map of human primary microRNA processing sites. Molecular Cell, 2021, 81, 3422-3439.e11.	4.5	42
52	fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: Lessons from DROSHA. Methods, 2019, 152, 3-11.	1.9	34
53	Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nature Structural and Molecular Biology, 2020, 27, 678-682.	3.6	32
54	L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nature Communications, 2021, 12, 880.	5.8	32

VIC NARRY KIM

#	Article	IF	CITATIONS
55	ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Research, 2020, 48, 11097-11112.	6.5	29
56	Coordinate regulation of the senescent state by selective autophagy. Developmental Cell, 2021, 56, 1512-1525.e7.	3.1	29
57	Deuterium-Free, Three-Plexed Peptide Diethylation for Highly Accurate Quantitative Proteomics. Journal of Proteome Research, 2019, 18, 1078-1087.	1.8	17
58	RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. Developmental Cell, 2021, 56, 1118-1130.e6.	3.1	14
59	Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nature Communications, 2021, 12, 6026.	5.8	14
60	Cell cycle micromanagement in embryonic stem cells. Nature Genetics, 2008, 40, 1391-1392.	9.4	13
61	U-tail as a guardian against invading RNAs. Nature Structural and Molecular Biology, 2018, 25, 903-905.	3.6	11
62	FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo. Nucleic Acids Research, 2021, 49, e28-e28.	6.5	11
63	MeCP2 Caught Moonlighting as a Suppressor of MicroRNA Processing. Developmental Cell, 2014, 28, 477-478.	3.1	8
64	Telomeres reforged with non-telomeric sequences in mouse embryonic stem cells. Nature Communications, 2021, 12, 1097.	5.8	3
65	MS1-Level Proteome Quantification Platform Allowing Maximally Increased Multiplexity for SILAC and In VitroChemical Labeling. Analytical Chemistry, 2020, 92, 4980-4989.	3.2	2