Lieven Gevers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 2008, 37, 365-405.	38.1	965
2	Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO ₂ to Short Chain Olefins. ACS Catalysis, 2018, 8, 9174-9182.	11.2	155
3	High throughput study of phase inversion parameters for polyimide-based SRNF membranes. Journal of Membrane Science, 2009, 330, 307-318.	8.2	145
4	Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO ₂ to Light Olefins and Aromatics. ACS Catalysis, 2019, 9, 6320-6334.	11.2	144
5	Ni–Sn-Supported ZrO ₂ Catalysts Modified by Indium for Selective CO ₂ Hydrogenation to Methanol. ACS Omega, 2018, 3, 3688-3701.	3.5	130
6	A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. Journal of the American Chemical Society, 2016, 138, 13770-13773.	13.7	114
7	Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes. Journal of Membrane Science, 2004, 231, 99-108.	8.2	113
8	Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes. Journal of Membrane Science, 2006, 278, 199-204.	8.2	96
9	High throughput screening for rapid development of membranes and membrane processes. Journal of Membrane Science, 2005, 250, 305-310.	8.2	95
10	Turning a Methanation Co Catalyst into an In–Co Methanol Producer. ACS Catalysis, 2019, 9, 6910-6918.	11.2	88
11	Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2020, 10, 5064-5076.	11.2	88
12	Plasma-treated PDMS-membranes in solvent resistant nanofiltration: Characterization and study of transport mechanism. Journal of Membrane Science, 2006, 275, 212-219.	8.2	75
13	Catalytic oxidation of 1,2-diols to α-hydroxy-carboxylates with stabilized gold nanocolloids combined with a membrane-based catalyst separation. Catalysis Letters, 2005, 102, 57-61.	2.6	71
14	Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes. Journal of Membrane Science, 2006, 274, 173-182.	8.2	69
15	Porphyrin-Functionalized Dendrimers: Synthesis and Application as Recyclable Photocatalysts in a Nanofiltration Membrane Reactor. Chemistry - A European Journal, 2005, 11, 6754-6762.	3.3	67
16	Optimisation of a lab-scale method for preparation of composite membranes with a filled dense top-layer. Journal of Membrane Science, 2006, 281, 741-746.	8.2	62
17	Tandem Conversion of CO ₂ to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 2019, 11, 2879-2886.	3.7	57
18	Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. Journal of Catalysis, 2020, 381, 347-354.	6.2	52

LIEVEN GEVERS

#	Article	IF	CITATIONS
19	Directed Development of High-Performance Membranes via High-Throughput and Combinatorial Strategies. ACS Combinatorial Science, 2006, 8, 168-173.	3.3	49
20	Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12, 5914.	12.8	43
21	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. Journal of Energy Chemistry, 2022, 68, 255-266.	12.9	43
22	Coated sulfated zirconia/SAPO-34 for the direct conversion of CO ₂ to light olefins. Catalysis Science and Technology, 2020, 10, 1507-1517.	4.1	34
23	The use of solvent resistant nanofiltration in the recycling of the Co-Jacobsen catalyst in the hydrolytic kinetic resolution (HKR) of epoxides. Journal of Membrane Science, 2006, 280, 245-252.	8.2	31
24	Solidification of Emulsified Polymer Solutions via Phase Inversion (SEPPI): A Generic Way To Prepare Polymers with Controlled Porosity. Chemistry of Materials, 2008, 20, 3457-3465.	6.7	25
25	Compositional Optimization of Polyimide-Based SEPPI Membranes Using a Genetic Algorithm and High-Throughput Techniques. ACS Combinatorial Science, 2009, 11, 243-251.	3.3	22
26	Conversion of Formic Acid into Methanol Using a Bipyridine-Functionalized Molecular Heterogeneous Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 3933-3939.	6.7	17
27	Stable Highâ€Pressure Methane Dry Reforming Under Excess of CO ₂ . ChemCatChem, 2020, 12, 5919-5925.	3.7	17
28	High throughput membrane testing and combinatorial techniques: powerful new instruments for membrane optimisation. Desalination, 2006, 199, 395-397.	8.2	9
29	A robust multistage mesoflow reactor for liquid–liquid extraction for the separation of Co/Ni with cyanex 272. Separation and Purification Technology, 2016, 168, 32-38.	7.9	9
30	The use of nanofiltration and ultrafiltration as tools in bridging the gap between heterogeneous and homogeneous catalysis. Desalination, 2006, 200, 411-413.	8.2	1
31	A novel method to prepare porous membranes/polymers with easy control over porosity and increased compaction resistance. Desalination, 2006, 199, 34-36.	8.2	Ο