Valeria C Culotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3934111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Battles with Iron: Manganese in Oxidative Stress Protection. Journal of Biological Chemistry, 2012, 287, 13541-13548.	3.4	249
2	SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration. Cell, 2013, 152, 224-235.	28.9	186
3	Crystal structure of the copper chaperone for superoxide dismutase. Nature Structural Biology, 1999, 6, 724-729.	9.7	175
4	The Yin and Yang of copper during infection. Journal of Biological Inorganic Chemistry, 2016, 21, 137-144.	2.6	162
5	Multiple Protein Domains Contribute to the Action of the Copper Chaperone for Superoxide Dismutase. Journal of Biological Chemistry, 1999, 274, 23719-23725.	3.4	158
6	Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast. Antioxidants and Redox Signaling, 2013, 19, 933-944.	5.4	124
7	Probing in vivo Mn ²⁺ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15335-15339.	7.1	113
8	SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection. PLoS Pathogens, 2016, 12, e1005295.	4.7	107
9	The many highways for intracellular trafficking of metals. Journal of Biological Inorganic Chemistry, 2003, 8, 803-809.	2.6	104
10	The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radical Biology and Medicine, 2009, 46, 154-162.	2.9	101
11	Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infection and Immunity, 2018, 86, .	2.2	98
12	A Manganese-rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi. Journal of Biological Chemistry, 2013, 288, 8468-8478.	3.4	65
13	Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. Journal of Biological Chemistry, 2018, 293, 4636-4643.	3.4	63
14	Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathogens, 2017, 13, e1006763.	4.7	57
15	Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathogens, 2018, 14, e1007076.	4.7	54
16	Disrupted Zinc-Binding Sites in Structures of Pathogenic SOD1 Variants D124V and H80R. Biochemistry, 2010, 49, 5714-5725.	2.5	50
17	Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. Journal of Biological Inorganic Chemistry, 2014, 19, 595-603.	2.6	36
18	An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase. PLoS ONE, 2016, 11, e0168400.	2.5	36

VALERIA C CULOTTA

#	Article	IF	CITATIONS
19	Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infectious Diseases, 2018, 4, 893-903.	3.8	28
20	The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases. Journal of Biological Chemistry, 2016, 291, 20911-20923.	3.4	27
21	Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. Journal of Biological Chemistry, 2020, 295, 570-583.	3.4	25
22	Changes in mammalian copper homeostasis during microbial infection. Metallomics, 2020, 12, 416-426.	2.4	25
23	Post-Translational Modification of Cu/Zn Superoxide Dismutase under Anaerobic Conditions. Biochemistry, 2012, 51, 677-685.	2.5	24
24	Cell biology of copper. Journal of Biological Inorganic Chemistry, 2010, 15, 1-2.	2.6	22
25	Antimicrobial action of calprotectin that does not involve metal withholding. Metallomics, 2018, 10, 1728-1742.	2.4	17
26	A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Biochemical and Biophysical Research Communications, 2018, 495, 814-820.	2.1	16
27	Copper in infectious disease: Using both sides of the penny. Seminars in Cell and Developmental Biology, 2021, 115, 19-26.	5.0	16
28	Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. Journal of Biological Chemistry, 2019, 294, 2700-5412.	3.4	15
29	Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells. Journal of Biological Chemistry, 2013, 288, 4557-4566.	3.4	14
30	Expanded role of the Cuâ€sensing transcription factor Mac1p in <i>Candida albicans</i> . Molecular Microbiology, 2020, 114, 1006-1018.	2.5	13
31	Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2015, 462, 251-256.	2.1	8
32	Ceruloplasmin as a source of Cu for a fungal pathogen. Journal of Inorganic Biochemistry, 2021, 219, 111424.	3.5	6
33	Cdc42 regulates reactive oxygen species production in the pathogenic yeast Candida albicans. Journal of Biological Chemistry, 2021, 297, 100917.	3.4	3
34	Setting a trap for copper. Nature Chemical Biology, 2014, 10, 986-987.	8.0	2
35	Shining light on photosynthetic microbes and manganese-enriched rock varnish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109436118.	7.1	0
36	Biochemical Analysis of <i>Caur</i> SOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen <i>Candida auris</i> . ACS Infectious Diseases, 2022, 8, 584-595.	3.8	0