
Tomoya Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extraction of Pd(<scp>ii</scp>), Rh(<scp>iii</scp>) and Ru(<scp>iii</scp>) from HNO ₃ aqueous solution to betainium bis(trifluoromethanesulfonyl)imide ionic liquid. Dalton Transactions, 2014, 43, 5648-5651.	3.3	65
2	Homogeneous liquid–liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Separation and Purification Technology, 2015, 155, 133-138.	7.9	37
3	Selective Liquid–Liquid Extraction of Uranyl Species Using Task-specific Ionic Liquid, Betainium Bis(trifluoromethylsulfonyl)imide. Chemistry Letters, 2014, 43, 775-777.	1.3	36
4	Recent Research in Solvent Extraction of Platinum Group Metals. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 157-167.	0.4	19
5	A study on selective precipitation ability of cyclic urea to U(VI) for developing reprocessing system based on precipitation method. Journal of Nuclear Science and Technology, 2012, 49, 1010-1017.	1.3	16
6	Speciation of Ruthenium(III) Chloro Complexes in Hydrochloric Acid Solutions and Their Extraction Characteristics with an Amide-Containing Amine Compound. Metals, 2018, 8, 558.	2.3	16
7	Studies on the Extraction of Soft Acid Metal Species Using MIDOA and Analogous Compounds. Solvent Extraction Research and Development, 2015, 22, 37-45.	0.4	13
8	Selective extraction of perrhenate anion in nitric acid solution using 2,2′-(imino)bis(N,N′-dioctylacetamide) as an extractant. Separation and Purification Technology, 2012, 92, 77-82.	7.9	12
9	Comparison of the Extractabilities of Tetrachloro- and Tetrabromopalladate(II) Ions with a Thiodiglycolamide Compound. Analytical Sciences, 2017, 33, 1305-1309.	1.6	12
10	Separation of Ru(III), Rh(III) and Pd(II) from nitric acid solutions using ion-exchange resins bearing carboxylic betaine. Separation Science and Technology, 2016, 51, 2815-2822.	2.5	8
11	Uranyl Species in 1-Ethyl-3-methylimidazolium Nitrate ([EMI][NO3]) Solution of [EMI]2[UO2(NO3)4]: First Spectrophotometric Evidence for Existence of [UO2(NO3)4]2â^². Chemistry Letters, 2014, 43, 670-672.	1.3	7
12	Complexing Agents for Oxonium Anions of Mo and Re and Their Masking Effects on Extraction Using N-Donor Extractants. Chemistry Letters, 2014, 43, 1538-1539.	1.3	7
13	Review of Recent Progress on Dissolution of Precious Metals and Speciation of Their Complexes in Aqueous Solutions. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 305-315.	0.4	7
14	A study on selective precipitation of U(VI) by hydrophilic cyclic urea derivatives for development of a reprocessing system based on precipitation method. Journal of Nuclear Science and Technology, 2014, 51, 514-520.	1.3	6
15	Correlation between intermolecular hydrogen bonds and melting points of uranyl nitrate complexes with cyclic urea derivatives. Polyhedron, 2015, 96, 102-106.	2.2	5
16	Silver extraction by N , N , N ′, N ′-tetraoctyl-thiodiglycolamide. Hydrometallurgy, 2016, 159, 107-109.	4.3	5
17	Selective Precipitation of Palladium(II) over Platinum(IV) in Hydrochloric Acid Solution by 2-Chloropyridine. Chemistry Letters, 2018, 47, 389-391.	1.3	5
18	Unique Anion-exchange Properties of 3,3′-Diaminobenzidine Resulting in High Selectivity for Rhodium(III) over Palladium(II) and Platinum(IV) in a Concentrated Hydrochloric Acid Solution. Analytical Sciences, 2019, 35, 1353-1360.	1.6	4

Томоуа Suzuki

#	Article	IF	CITATIONS
19	Bis(1,3-dimethyl-1,3-diazinan-2-one)dinitratodioxidouranium(VI). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m18-m18.	0.2	3
20	Syntheses and crystal structures of Eu(III) and Sm(III) perrhenate complexes with 2,2′-(imino)bis(<i>N,N</i> ′-diethylacetamide). Journal of Nuclear Science and Technology, 2014, 51, 1133-1140.	1.3	3
21	Investigation of Single-cycle Separation Process Based on Forward and Backward Extractions of Actinides and Fission Products. Transactions of the Atomic Energy Society of Japan, 2015, 14, 202-212.	0.3	3
22	Recovery of Rhodium(III) from Nitric Acid Solutions Using Adsorbent Functionalized with <i>N</i> , <i>N</i> , <i>N<</i>	3.2	3
23	Efficient Adsorption of Rh(III) from HNO3 Solution on Ion-exchange Resin Bearing <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> , Ip of the set	1.3	2
24	Mechanism of Palladium(II) Adsorption from Nitric Acid Solutions by a Styrene-Divinylbenzene Copolymer Functionalized with <i>N,N,N</i> -Trimethylglycine. Solvent Extraction Research and Development, 2019, 26, 11-19.	0.4	2
25	Speciation and separation of platinum(<scp>iv</scp>) polynuclear complexes in concentrated nitric acid solutions. Dalton Transactions, 2021, 50, 11390-11397.	3.3	2
26	Effect of HNO ₃ Concentration on the Pd(II) Extraction Properties using a Thiodiglycolamide Compound. Solvent Extraction Research and Development, 2019, 26, 43-49.	0.4	1
27	Synergism in the Extraction of Ru(III) by a Tri- <i>n</i> -Octylamine–Di- <i>n</i> -Hexylsulfide System. Solvent Extraction Research and Development, 2020, 27, 57-62.	0.4	1