Shinya Takashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. Journal of Applied Physics, 2018, 123, .	1.1	112
2	Control of the inversion-channel MOS properties by Mg doping in homoepitaxial p-GaN layers. Applied Physics Express, 2017, 10, 121004.	1.1	69
3	Vacancyâ€ŧype defects and their annealing behaviors in Mgâ€implanted GaN studied by a monoenergetic positron beam. Physica Status Solidi (B): Basic Research, 2015, 252, 2794-2801.	0.7	65
4	Carrier Trapping by Vacancyâ€Type Defects in Mgâ€Implanted GaN Studied Using Monoenergetic Positron Beams. Physica Status Solidi (B): Basic Research, 2018, 255, 1700521.	0.7	60
5	Demonstration of 1200 V/1.4 mΩ cm ² vertical GaN planar MOSFET fabricated by an all ion implantation process. Japanese Journal of Applied Physics, 2020, 59, SGGD02.	0.8	59
6	Sidewall Dominated Characteristics on Fin-Gate AlGaN/GaN MOS-Channel-HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 3025-3031.	1.6	55
7	Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate. Applied Physics Letters, 2018, 112, .	1.5	55
8	Electron microscopy studies of the intermediate layers at the SiO ₂ /GaN interface. Japanese Journal of Applied Physics, 2017, 56, 110312.	0.8	28
9	Room temperature photoluminescence lifetime for the near-band-edge emission of epitaxial and ion-implanted GaN on GaN structures. Japanese Journal of Applied Physics, 2019, 58, SC0802.	0.8	25
10	Atomic-scale quantitative analysis of implanted Mg in annealed GaN layers on free-standing GaN substrates. Journal of Applied Physics, 2019, 126, .	1.1	19
11	Influence of implanted Mg concentration on defects and Mg distribution in GaN. Journal of Applied Physics, 2020, 128, .	1.1	16
12	Improved minority carrier lifetime in p-type GaN segments prepared by vacancy-guided redistribution of Mg. Applied Physics Letters, 2021, 119, .	1.5	13
13	Mg diffusion and activation along threading dislocations in GaN. Applied Physics Letters, 2020, 116, .	1.5	12
14	Structural disorder and in-gap states of Mg-implanted GaN films evaluated by photothermal deflection spectroscopy. Journal of Crystal Growth, 2019, 511, 15-18.	0.7	10
15	Atomic-scale investigation of implanted Mg in GaN through ultra-high-pressure annealing. Journal of Applied Physics, 2022, 131, .	1.1	8
16	Dependence of thermal stability of GaN on substrate orientation and off-cut. Japanese Journal of Applied Physics, 2019, 58, SCCD17.	0.8	5
17	Electron-Beam-Induced Current Study of Dislocations and Leakage Sites in GaN Schottky Barrier Diodes. Journal of Electronic Materials, 2020, 49, 5196-5204.	1.0	3