List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933697/publications.pdf Version: 2024-02-01

XIAO FENC

#	Article	IF	CITATIONS
1	Covalent organic frameworks. Chemical Society Reviews, 2012, 41, 6010.	38.1	2,409
2	Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307, 361-381.	18.8	1,098
3	Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.	13.7	832
4	Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 4258-4261.	13.7	775
5	Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2, 448-456.	34.4	642
6	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	38.1	617
7	Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control. Journal of the American Chemical Society, 2016, 138, 5785-5788.	13.7	574
8	Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nature Communications, 2019, 10, 2177.	12.8	476
9	Synthesis of Metallophthalocyanine Covalent Organic Frameworks That Exhibit High Carrier Mobility and Photoconductivity. Angewandte Chemie - International Edition, 2011, 50, 1289-1293.	13.8	462
10	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	4.5	397
11	Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society, 2014, 136, 15485-15488.	13.7	390
12	Pore surface engineering in covalent organic frameworks. Nature Communications, 2011, 2, 536.	12.8	387
13	A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 2014, 50, 13825-13828.	4.1	351
14	A novel "turn-on―fluorescent chemosensor for the selective detection ofAl3+ based on aggregation-induced emission. Chemical Communications, 2012, 48, 416-418.	4.1	346
15	Highâ€Rate Chargeâ€Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction. Angewandte Chemie - International Edition, 2012, 51, 2618-2622.	13.8	344
16	An <i>n</i> -Channel Two-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2011, 133, 14510-14513.	13.7	330
17	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16313-16317	13.8	290
18	A Squaraine‣inked Mesoporous Covalent Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 3770-3774.	13.8	287

#	Article	IF	CITATIONS
19	Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016, 3, 896-909.	6.0	278
20	Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. Angewandte Chemie - International Edition, 2013, 52, 2017-2021.	13.8	263
21	An Ambipolar Conducting Covalent Organic Framework with Selfâ€Sorted and Periodic Electron Donorâ€Acceptor Ordering. Advanced Materials, 2012, 24, 3026-3031.	21.0	258
22	Rollâ€ŧoâ€Roll Production of Metalâ€Organic Framework Coatings for Particulate Matter Removal. Advanced Materials, 2017, 29, 1606221.	21.0	252
23	Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO ₂ under mild conditions. Journal of Materials Chemistry A, 2018, 6, 374-382.	10.3	238
24	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	13.8	235
25	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	13.7	217
26	Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chemical Communications, 2011, 47, 1979.	4.1	215
27	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138, 10100-10103.	13.7	214
28	Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 2019, 9, 10365-10376.	1.9	204
29	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie - International Edition, 2016, 55, 3419-3423.	13.8	201
30	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016, 8, 16736-16743.	8.0	198
31	An Azineâ€Linked Covalent Organic Framework: Synthesis, Characterization and Efficient Gas Storage. Chemistry - A European Journal, 2015, 21, 12079-12084.	3.3	197
32	Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021, 20, 1551-1558.	27.5	195
33	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	10.3	194
34	Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Applied Catalysis B: Environmental, 2019, 245, 334-342.	20.2	192
35	Zn ²⁺ â€Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small, 2015, 11, 3807-3813.	10.0	178
36	Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the American Chemical Society, 2016, 138, 10810-10813.	13.7	178

XIAO FENG

#	Article	IF	CITATIONS
37	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	10.3	176
38	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	6.7	165
39	Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications, 2019, 10, 4204.	12.8	157
40	Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2021, 143, 5727-5736.	13.7	157
41	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	12.8	154
42	A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chemical Communications, 2014, 50, 8057-8060.	4.1	151
43	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	7.8	144
44	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 27324-27329.	13.8	142
45	Aggregation-Induced Emission Enhancement of Aryl-Substituted Pyrrole Derivatives. Journal of Physical Chemistry B, 2010, 114, 16731-16736.	2.6	139
46	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	5.9	136
47	Covalent organic frameworks as pH responsive signaling scaffolds. Chemical Communications, 2016, 52, 11088-11091.	4.1	135
48	A checklist for maximizing reproducibility of ecological niche models. Nature Ecology and Evolution, 2019, 3, 1382-1395.	7.8	134
49	Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling lé-electronic functions. Chemical Communications, 2012, 48, 8952.	4.1	133
50	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie - International Edition, 2018, 57, 16501-16505.	13.8	128
51	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	21.0	127
52	In Situ Growth of MOFs on the Surface of Si Nanoparticles for Highly Efficient Lithium Storage: Si@MOF Nanocomposites as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 2178-2182.	8.0	124
53	Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 4750-4756.	8.0	123
54	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117

XIAO FENG

#	Article	lF	CITATIONS
55	Water Purification: Adsorption over Metalâ€Organic Frameworks. Chinese Journal of Chemistry, 2016, 34, 175-185.	4.9	116
56	Reversible and hydrogen bonding-assisted piezochromic luminescence for solid-state tetraaryl-buta-1,3-diene. Chemical Communications, 2013, 49, 7049.	4.1	115
57	A highly sensitive, single selective, real-time and "turn-on―fluorescent sensor for Al3+ detection in aqueous media. Journal of Materials Chemistry, 2012, 22, 19296.	6.7	110
58	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.	2.6	110
59	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2019, 58, 4221-4226.	13.8	109
60	Metalâ€Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. Advanced Materials, 2016, 28, 5837-5843.	21.0	108
61	Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. Journal of Materials Chemistry A, 2014, 2, 2168-2173.	10.3	102
62	A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chemical Communications, 2014, 50, 6894.	4.1	101
63	A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Scientific Reports, 2014, 4, 4366.	3.3	100
64	Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. Journal of Materials Chemistry A, 2014, 2, 5724-5729.	10.3	98
65	An Ironâ€Containing Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie - International Edition, 2018, 57, 16416-16420.	13.8	97
66	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	4.5	97
67	Facile Fabrication of Multifunctional Metal–Organic Framework Hollow Tubes To Trap Pollutants. Journal of the American Chemical Society, 2017, 139, 16482-16485.	13.7	96
68	Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 1367-1390.	8.2	95
69	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	4.5	94
70	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 21685-21690.	13.8	94
71	Underappreciated plant vulnerabilities to heat waves. New Phytologist, 2021, 231, 32-39.	7.3	91
72	A Visibleâ€Lightâ€Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Crossâ€Coupling Dual Catalyst. Angewandte Chemie - International Edition, 2021, 60, 10820-10827.	13.8	90

#	Article	IF	CITATIONS
73	Synthesis of covalent organic frameworks <i>via in situ</i> salen skeleton formation for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 5482-5492.	10.3	89
74	Sophisticated Design of Covalent Organic Frameworks with Controllable Bimetallic Docking for a Cascade Reaction. Chemistry - A European Journal, 2016, 22, 9087-9091.	3.3	86
75	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	13.7	85
76	An effective approach to improve the electrochemical performance of LiNi _{0.6} Co _{0.2} Nn _{0.2} O ₂ cathode by an MOF-derived coating. Journal of Materials Chemistry A, 2016, 4, 5823-5827.	10.3	84
77	Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27, 1383-1394.	9.0	76
78	Synthesis and Structure–Property Relationships of Polyimide Covalent Organic Frameworks for Carbon Dioxide Capture and (Aqueous) Sodium-Ion Batteries. Chemistry of Materials, 2021, 33, 818-833.	6.7	76
79	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	8.0	75
80	Star-shaped two-dimensional covalent organic frameworks. CrystEngComm, 2013, 15, 1508-1511.	2.6	74
81	Chirality from substitution: enantiomer separation via a modified metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12145-12148.	10.3	73
82	An Ironâ€Containing Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie, 2018, 130, 16654-16658.	2.0	73
83	A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. Journal of Materials Chemistry C, 2015, 3, 7446-7454.	5.5	69
84	Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. Journal of Materials Chemistry A, 2020, 8, 8706-8715.	10.3	66
85	A copper(<scp>ii</scp>)-based MOF film for highly efficient visible-light-driven hydrogen production. Journal of Materials Chemistry A, 2016, 4, 7174-7177.	10.3	65
86	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	27.8	65
87	Tuning the Spin State of the Iron Center by Bridgeâ€Bonded Feâ€Oâ€ī Ligands for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
88	Facile fabrication of magnetically recyclable metal–organic framework nanocomposites for highly efficient and selective catalytic oxidation of benzylic C–H bonds. Chemical Communications, 2014, 50, 8374-8377.	4.1	58
89	Darwin's naturalization conundrum can be explained by spatial scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10904-10910.	7.1	58
90	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	13.7	58

#	Article	IF	CITATIONS
91	A Heat-Resistant and Energetic Metal–Organic Framework Assembled by Chelating Ligand. ACS Applied Materials & Interfaces, 2017, 9, 37542-37547.	8.0	55
92	Red fluorescent luminogen from pyrrole derivatives with aggregation-enhanced emission for cell membrane imaging. Chemical Communications, 2015, 51, 8555-8558.	4.1	54
93	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie, 2017, 129, 16531-16535.	2.0	54
94	Stable Aluminum Metal–Organic Frameworks (Al-MOFs) for Balanced CO ₂ and Water Selectivity. ACS Applied Materials & Interfaces, 2018, 10, 3160-3163.	8.0	52
95	Prefabricated covalent organic framework nanosheets with double vacancies: anchoring Cu for highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 25094-25100.	10.3	50
96	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
97	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	5.5	43
98	DMF-induced emission of an aryl-substituted pyrrole derivative: a solid thermo-responsive material to detect temperature in a specific range. Journal of Materials Chemistry C, 2013, 1, 7534.	5.5	42
99	Metalâ€Organic Frameworks Derived Porous Carbons: Syntheses, Porosity and Gas Sorption Properties. Chinese Journal of Chemistry, 2016, 34, 157-174.	4.9	42
100	Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 2020, 23, 1003-1013.	6.4	41
101	Zinc/Nickelâ€Doped Hollow Core–Shell Co ₃ O ₄ Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1651-1656.	3.3	40
102	Binary Pd–Polyoxometalates and Isolation of a Ternary Pd–V–Polyoxomolybdate Active Species for Selective Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2014, 20, 2557-2564.	3.3	39
103	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	3.3	39
104	Electropolymerization of Molecularâ€ s ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	13.8	39
105	Supramolecular Alternating Donor–Acceptor Assembly toward Intercalated Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3712-3717.	13.7	38
106	Mechanochromic Behavior of Arylâ€Substituted Butaâ€1,3â€Diene Derivatives with Aggregation Enhanced Emission. Chemistry - A European Journal, 2014, 20, 8856-8861.	3.3	37
107	A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels. Journal of Materials Chemistry C, 2015, 3, 7621-7626.	5.5	37
108	Molecular‣ieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie - International Edition, 2020, 59, 4401-4405.	13.8	35

#	Article	IF	CITATIONS
109	The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells. Biomaterials, 2016, 103, 67-74.	11.4	34
110	FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 954-964.	2.4	33
111	Controllable synthesis of porous TiO ₂ with a hierarchical nanostructure for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 3710-3718.	10.3	33
112	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie - International Edition, 2021, 60, 21304-21309.	13.8	33
113	Covalent organic framework-based membranes for liquid separation. Organic Chemistry Frontiers, 2021, 8, 3943-3967.	4.5	32
114	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	3.3	29
115	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	5.8	29
116	Investigating the effects of side chain length on the AIE properties of water-soluble TPE derivatives. Tetrahedron Letters, 2014, 55, 1496-1500.	1.4	28
117	Ecological niche modelling confirms potential northâ€east range expansion of the nineâ€banded armadillo (<i>Dasypus novemcinctus</i>) in the <scp>USA</scp> . Journal of Biogeography, 2015, 42, 803-807.	3.0	28
118	Aggregation-induced emission enhancement and aggregation-induced circular dichroism of chiral pentaphenylpyrrole derivatives and their helical self-assembly. New Journal of Chemistry, 2017, 41, 8877-8884.	2.8	27
119	3D cross-correlative matrix temperature detection and non-invasive thermal mapping based on a molecular probe. Chemical Science, 2014, 5, 4388-4393.	7.4	25
120	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie, 2018, 130, 16739-16743.	2.0	25
121	Electrically conductive 2D covalent organic frameworks. Trends in Chemistry, 2022, 4, 128-141.	8.5	25
122	The selective detection of chloroform using an organic molecule with aggregation-induced emission properties in the solid state as a fluorescent sensor. Sensors and Actuators B: Chemical, 2016, 232, 264-268.	7.8	24
123	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
124	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie, 2016, 128, 3480-3484.	2.0	22
125	A Tale of Copper Coordination Frameworks: Controlled Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations and Their Catalytic CH Bond Activation Properties. Chemistry - A European Journal, 2015, 21, 13894-13899.	3.3	20
126	MOF derived composites for cathode protection: coatings of LiCoO ₂ from UiO-66 and MIL-53 as ultra-stable cathodes. Chemical Communications, 2015, 51, 12391-12394.	4.1	20

#	Article	IF	CITATIONS
127	The synthesis of chiral triphenylpyrrole derivatives and their aggregation-induced emission enhancement, aggregation-induced circular dichroism and helical self-assembly. RSC Advances, 2016, 6, 23420-23427.	3.6	20
128	Electropolymerization of Molecular‣ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	2.0	20
129	Large-Scale Production of MOF-Derived Coatings for Functional Interlayers in High-Performance Li–S Batteries. ACS Applied Energy Materials, 2018, 1, 6986-6991.	5.1	19
130	Aggregation-induced emission enhancement in poly(phenylene-ethynylene)s bearing aniline groups. Chinese Journal of Polymer Science (English Edition), 2012, 30, 443-450.	3.8	18
131	Applications of self-assembled one-bilayer nanofilms based on hydroxyl-containing tetraphenylethene derivative's nanoaggregates as chemosensors to volatile of solid nitroaromatics. Sensors and Actuators B: Chemical, 2012, 161, 587-593.	7.8	17
132	Physiological limits in an ecological niche modeling framework: A case study of water temperature and salinity constraints of freshwater bivalves invasive in USA. Ecological Modelling, 2017, 346, 48-57.	2.5	17
133	A Visibleâ€Lightâ€Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Crossâ€Coupling Dual Catalyst. Angewandte Chemie, 2021, 133, 10915-10922.	2.0	17
134	Metal–Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33209-33217.	8.0	17
135	Controlled Modification of Axial Coordination for Transitionâ€Metal Singleâ€Atom Electrocatalyst. Chemistry - A European Journal, 2022, 28, .	3.3	17
136	Forest Management Under Megadrought: Urgent Needs at Finer Scale and Higher Intensity. Frontiers in Forests and Global Change, 2020, 3, .	2.3	16
137	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2021, 133, 21853-21858.	2.0	16
138	Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. Journal of Plant Ecology, 2019, 12, 791-803.	2.3	15
139	Synergistic Effects of Inorganic–Organic Protective Layer for Robust Cycling Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 844-850.	8.0	15
140	Efficient imaging method for multireceiver SAS. IET Radar, Sonar and Navigation, 2022, 16, 1470-1483.	1.8	15
141	Aggregationâ€Induced Emission of Hexaphenylâ€1,3â€butadiene. Chinese Journal of Chemistry, 2015, 33, 701-704.	4.9	13
142	Doubling demands in programming skills call for ecoinformatics education. Frontiers in Ecology and the Environment, 2020, 18, 123-124.	4.0	13
143	Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis. Ecography, 2020, 43, 270-282.	4.5	12
144	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 27530-27535.	2.0	12

#	Article	IF	CITATIONS
145	Can incomplete knowledge of species' physiology facilitate ecological niche modelling? A case study with virtual species. Diversity and Distributions, 2017, 23, 1157-1168.	4.1	11
146	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie, 2019, 131, 4265-4270.	2.0	11
147	A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal–Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance. Chemistry - A European Journal, 2017, 23, 11513-11518.	3.3	10
148	A new synthetic approach to functionalize oxomolybdenum complexes. CrystEngComm, 2013, 15, 7410.	2.6	8
149	Species residency status affects model selection and hypothesis testing in freshwater community ecology. Freshwater Biology, 2016, 61, 1568-1579.	2.4	8
150	Onâ€Water Polymerization of Phenylacetylene Catalyzed by Rh Complexes Bearing Strong Ï€â€Acidic Dibenzo[a,e]cyclooctatetraene Ligand. Journal of Polymer Science Part A, 2017, 55, 716-725.	2.3	8
151	Can land use indicate wetland floristic quality and taxonomic distinctness?. Ecological Indicators, 2017, 78, 331-339.	6.3	8
152	Rainfall pulses mediate longâ€ŧerm plant community compositional dynamics in a semiâ€arid rangeland. Journal of Applied Ecology, 2021, 58, 708-717.	4.0	8
153	Design and synthesis of covalent organic frameworks. Chinese Science Bulletin, 2018, 63, 2229-2245.	0.7	7
154	Effect of bilayer number on the photoluminescent property of TPE-based self-assembled film. Science Bulletin, 2013, 58, 2728-2732.	1.7	6
155	Two chiral multinuclear palladium(ii) complexes comprising alternately arranged isomerous hexanuclear clusters. CrystEngComm, 2013, 15, 6461.	2.6	6
156	Drug Delivery: Zn ²⁺ â€Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates (Small 31/2015). Small, 2015, 11, 3806-3806.	10.0	6
157	Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016). Advanced Materials, 2016, 28, 5766-5766.	21.0	6
158	Climatic Similarity of Extant and Extinct Dasypus Armadillos. Journal of Mammalian Evolution, 2017, 24, 193-206.	1.8	6
159	Two-step separation-free quantitative detection of HSA and FIB in human blood plasma by a pentaphenylpyyrrole derivative with aggregation-enhanced emission properties. Sensors and Actuators B: Chemical, 2018, 255, 854-861.	7.8	6
160	Sealing functional ionic liquids in conjugated microporous polymer membrane by solvent-assisted micropore tightening. Nano Research, 2022, 15, 2552-2557.	10.4	6
161	Canine and human infection with Borrelia burgdorferi in the New York City metropolitan area. Parasites and Vectors, 2018, 11, 187.	2.5	5
162	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5

#	Article	IF	CITATIONS
163	Strategies in constructing covalent organic framework membranes for molecular sieving. Science China Chemistry, 2022, 65, 836-839.	8.2	5
164	A facile method to prepare energetic materials (EMs). RSC Advances, 2017, 7, 48161-48165.	3.6	4
165	Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 2022, 31, 200-214.	5.8	4
166	Hiding in a Cool Climatic Niche in the Tropics? An Assessment of the Ecological Biogeography of Hairy Long-Nosed Armadillos (<i>Dasypus pilosus</i>). Tropical Conservation Science, 2017, 10, 194008291769724.	1.2	3
167	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie, 2021, 133, 21474-21479.	2.0	3
168	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie, 2022, 134, .	2.0	2
169	Direction of arrival estimation under Class A modelled noise in shallow water using variational Bayesian inference method. IET Radar, Sonar and Navigation, 0, , .	1.8	2
170	Armadillo Mapper. Tropical Conservation Science, 2017, 10, 194008291772413.	1.2	1
171	Molecular‧ieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie, 2020, 132, 4431-4435.	2.0	1
172	在æ,©å'Œæţä»¶ä,‹å•̂æ^金属有机骨架ä,Žåıٌ€,åıٌ€ææ−™åŠå¶æ€§èƒ½çç"ç©¶. Scientia Sinica Chin	וca ე.⊉ 014	, 44, 1521-15
173	Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. Acta Chimica Sinica, 2022, 80, 168.	1.4	1
174	A Viterbi Decoder under Class A Modeled Noise in Shallow Water. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	1.2	1
175	Titelbild: Photoinduced Postsynthetic Polymerization of a Metal-Organic Framework toward a Flexible Stand-Alone Membrane (Angew. Chem. 14/2015). Angewandte Chemie, 2015, 127, 4199-4199.	2.0	0
176	Innenrücktitelbild: Electropolymerization of Molecularâ€5ieving Polythiophene Membranes for H ₂ Separation (Angew. Chem. 26/2019). Angewandte Chemie, 2019, 131, 9039-9039.	2.0	0
177	Rücktitelbild: Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21764-21764.	2.0	0
178	SYNTHESIS AND THERMAL STABILITY OF PHOSPHAPHENANTHRENE-CONTAINING POLYACETYLENES. Acta	0.0	0

SYNTHESIS AND THERMAL STABILITY OF Polymerica Sinica, 2009, 009, 769-774. 178