Bharat B Kale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Doped TiO ₂ Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Solâ^'Gel Method. Journal of Physical Chemistry C, 2008, 112, 14595-14602.	1.5	398
2	Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catalysis Today, 2016, 260, 126-134.	2.2	229
3	Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chemistry, 2011, 13, 2500.	4.6	150
4	An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chemistry, 2012, 14, 2790.	4.6	145
5	Synthesis of Nanosize-Necked Structure ?- and ?-Fe2O3and its Photocatalytic Activity. Journal of the American Ceramic Society, 2007, 90, 412-414.	1.9	135
6	Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 2012, 92, 35-41.	2.5	126
7	Fern-like rGO/BiVO ₄ Hybrid Nanostructures for High-Energy Symmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 31602-31610.	4.0	111
8	In-situ preparation of N-TiO ₂ /graphene nanocomposite and its enhanced photocatalytic hydrogen production by H ₂ S splitting under solar light. Nanoscale, 2015, 7, 5023-5034.	2.8	104
9	A Facile Templateâ€Free Approach for the Largeâ€Scale Solidâ€Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance. Small, 2011, 7, 957-964.	5.2	99
10	In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. Journal of Materials Chemistry A, 2015, 3, 17050-17063.	5.2	96
11	Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. International Journal of Hydrogen Energy, 2011, 36, 11628-11639.	3.8	82
12	Mimics of microstructures of Ni substituted Mn1â^'xNixCo2O4 for high energy density asymmetric capacitors. Chemical Engineering Journal, 2017, 307, 300-310.	6.6	76
13	Template-Free Synthesis of Nanostructured Cd _{<i>x</i>} Zn _{1–<i>x</i>} S with Tunable Band Structure for H ₂ Production and Organic Dye Degradation Using Solar Light. Environmental Science & Technology, 2013, 47, 6664-6672.	4.6	75
14	Interstitial charge transfer pathways in a TiO ₂ /CdIn ₂ S ₄ heterojunction photocatalyst for direct conversion of sunlight into fuel. Journal of Materials Chemistry A, 2018, 6, 16064-16073.	5.2	73
15	Hierarchical nanostructures of CdIn2S4via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts. Journal of Materials Chemistry, 2010, 20, 6095.	6.7	71
16	Ag:BiVO ₄ dendritic hybrid-architecture for high energy density symmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 7580-7584.	5.2	71
17	Novel sonochemical assisted hydrothermal approach towards the controllable synthesis of ZnO nanorods, nanocups and nanoneedles and their photocatalytic study. CrystEngComm, 2009, 11, 2776.	1.3	68
18	Solar light active plasmonic Au@TiO ₂ nanocomposite with superior photocatalytic performance for H ₂ production and pollutant degradation. New Journal of Chemistry, 2018, 42, 10958-10968.	1.4	67

#	Article	IF	CITATIONS
19	A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Advances, 2014, 4, 60626-60635.	1.7	64
20	Facile Synthesis of Unique Cellulose Triacetate Based Flexible and High Performance Gel Polymer Electrolyte for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34773-34782.	4.0	62
21	Nanostructured N-doped orthorhombic Nb ₂ O ₅ as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Transactions, 2017, 46, 14859-14868.	1.6	60
22	Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S. Nanoscale, 2013, 5, 9383.	2.8	57
23	Hierarchical 3D ZnIn ₂ S ₄ /graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 31850-31861.	1.3	57
24	Magnetically separable Ag ₃ PO ₄ /NiFe ₂ O ₄ composites with enhanced photocatalytic activity. Dalton Transactions, 2015, 44, 20426-20434.	1.6	57
25	Confinement of nano CdS in designated glass: a novel functionality of quantum dot–glass nanosystems in solar hydrogen production. Journal of Materials Chemistry, 2007, 17, 4297.	6.7	55
26	Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sensors and Actuators B: Chemical, 2013, 187, 407-412.	4.0	51
27	Unique perforated graphene derived from <i>Bougainvillea</i> flowers for high-power supercapacitors: a green approach. Nanoscale, 2017, 9, 4801-4809.	2.8	51
28	Self-assembled hierarchical nanostructures of Bi ₂ WO ₆ for hydrogen production and dye degradation under solar light. CrystEngComm, 2015, 17, 107-115.	1.3	48
29	A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. Journal of Materials Chemistry, 2011, 21, 19241.	6.7	44
30	Environmentally benign enhanced hydrogen production via lethal H ₂ S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Advances, 2014, 4, 49295-49302.	1.7	42
31	Nanostructured 2D MoS ₂ honeycomb and hierarchical 3D CdMoS ₄ marigold nanoflowers for hydrogen production under solar light. Journal of Materials Chemistry A, 2015, 3, 21233-21243.	5.2	41
32	Nanostructured CdS sensitized CdWO4 nanorods for hydrogen generation from hydrogen sulfide and dye degradation under sunlight. Journal of Colloid and Interface Science, 2017, 487, 504-512.	5.0	40
33	Cobalt-Doped Manganese Dioxide Hierarchical Nanostructures for Enhancing Pseudocapacitive Properties. ACS Omega, 2021, 6, 5717-5729.	1.6	40
34	Architecture of rose and hollow marigold-like ZnIn2S4 flowers: structural, optical and photocatalytic study. RSC Advances, 2014, 4, 12182.	1.7	39
35	Synthesis of porous nitrogen doped zinc oxide nanostructures using a novel paper mediated template method and their photocatalytic study for dye degradation under natural sunlight. Materials Chemistry Frontiers, 2018, 2, 163-170.	3.2	38
36	Unique CdS@MoS2 Core Shell Heterostructure for Efficient Hydrogen Generation Under Natural Sunlight. Scientific Reports, 2019, 9, 12036.	1.6	38

#	Article	IF	CITATIONS
37	Two-dimensional hexagonal SnS ₂ nanostructures for photocatalytic hydrogen generation and dye degradation. Sustainable Energy and Fuels, 2019, 3, 3406-3414.	2.5	37
38	In situ preparation of N doped orthorhombic Nb2O5 nanoplates /rGO composites for photocatalytic hydrogen generation under sunlight. International Journal of Hydrogen Energy, 2018, 43, 19873-19884.	3.8	36
39	Perforated N-doped monoclinic ZnWO ₄ nanorods for efficient photocatalytic hydrogen generation and RhB degradation under natural sunlight. Catalysis Science and Technology, 2018, 8, 2909-2919.	2.1	33
40	A stable Bi ₂ S ₃ quantum dot–glass nanosystem: size tuneable photocatalytic hydrogen production under solar light. RSC Advances, 2015, 5, 58485-58490.	1.7	32
41	In situ fabrication of highly crystalline CdS decorated Bi ₂ S ₃ nanowires (nano-heterostructure) for visible light photocatalyst application. RSC Advances, 2016, 6, 23508-23517.	1.7	30
42	Porous MoS ₂ Framework and Its Functionality for Electrochemical Hydrogen Evolution Reaction and Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5900-5908.	2.5	30
43	Architecture of the CdIn ₂ S ₄ /graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery. RSC Advances, 2016, 6, 34724-34736.	1.7	29
44	Sn3O4 microballs as highly efficient photocatalyst for hydrogen generation and degradation of phenol under solar light irradiation. Materials Chemistry and Physics, 2019, 221, 493-500.	2.0	29
45	Cellulose-Derived Flame-Retardant Solid Polymer Electrolyte for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 1559-1567.	3.2	29
46	Synthesis and structural analysis of visible light photocatalyst, ZnBiGaO4 for photocatalytic solar hydrogen production. International Journal of Energy Research, 2010, 34, 404-411.	2.2	28
47	Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant. Journal of Applied Physics, 2011, 109, .	1.1	27
48	Enhanced hydrogen production under a visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates. New Journal of Chemistry, 2015, 39, 3821-3834.	1.4	27
49	Growth study of hierarchical Ag ₃ PO ₄ /LaCO ₃ OH heterostructures and their efficient photocatalytic activity for RhB degradation. Physical Chemistry Chemical Physics, 2017, 19, 20541-20550.	1.3	27
50	Green sol–gel route for selective growth of 1D rutile N–TiO ₂ : a highly active photocatalyst for H ₂ generation and environmental remediation under natural sunlight. RSC Advances, 2017, 7, 33029-33042.	1.7	27
51	Highly crystalline anatase TiO ₂ nanocuboids as an efficient photocatalyst for hydrogen generation. RSC Advances, 2021, 11, 7587-7599.	1.7	27
52	Synthesis of a novel photocatalyst, ZnBiVO4, for the photodecomposition of H2S. Canadian Journal of Chemistry, 2005, 83, 527-532.	0.6	24
53	Nanostructured layered Sn ₃ O ₄ for hydrogen production and dye degradation under sunlight. RSC Advances, 2016, 6, 95663-95669.	1.7	24
54	ZnO decorated Sn ₃ O ₄ nanosheet nano-heterostructure: a stable photocatalyst for water splitting and dye degradation under natural sunlight. RSC Advances, 2019, 9, 10289-10296.	1.7	24

#	Article	IF	CITATIONS
55	Novel and stable Mn ²⁺ @Bi ₂ S ₃ quantum dots–glass system with giant magneto optical Faraday rotations. Journal of Materials Chemistry C, 2013, 1, 1203-1210.	2.7	23
56	Hierarchical nanostructures of nitrogen-doped molybdenum sulphide for supercapacitors. RSC Advances, 2018, 8, 39749-39755.	1.7	23
57	Growth of Bi2Te3 quantum dots/rods in glass: a unique highly stable nanosystem with novel functionality for high performance magneto optical devices. Physical Chemistry Chemical Physics, 2012, 14, 16236.	1.3	22
58	Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity. Journal of Composites Science, 2019, 3, 90.	1.4	22
59	A hierarchical SnS@ZnIn ₂ S ₄ marigold flower-like 2D nano-heterostructure as an efficient photocatalyst for sunlight-driven hydrogen generation. Nanoscale Advances, 2020, 2, 2577-2586.	2.2	22
60	Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Materials Science and Engineering C, 2022, 134, 112592.	3.8	22
61	<i>In situ</i> preparation of CdS decorated ZnWO ₄ nanorods as a photocatalyst for direct conversion of sunlight into fuel and RhB degradation. Sustainable Energy and Fuels, 2019, 3, 793-800.	2.5	21
62	Graphene-wrapped Ag 3 PO 4 /LaCO 3 OH heterostructures for water purification under visible light. Journal of Energy Chemistry, 2016, 25, 845-853.	7.1	20
63	Mesoporous Mn ₂ O ₃ /reduced graphene oxide (rGO) composite with enhanced electrochemical performance for Li-ion battery. Dalton Transactions, 2017, 46, 9777-9783.	1.6	19
64	Nickel nanoparticles grown by successive ionic layer adsorption and reaction method for ethanol electrooxidation and electrochemical quartz crystal microbalance study. New Journal of Chemistry, 2019, 43, 2955-2965.	1.4	18
65	Facile synthesis of SnO2@carbon nanocomposites for lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3366-3374.	1.4	18
66	Unique N doped Sn ₃ O ₄ nanosheets as an efficient and stable photocatalyst for hydrogen generation under sunlight. Nanoscale, 2020, 12, 8502-8510.	2.8	18
67	CdS decorated MnWO ₄ nanorod nanoheterostructures: a new 0D–1D hybrid system for enhanced photocatalytic hydrogen production under natural sunlight. Nanoscale Advances, 2021, 3, 508-516.	2.2	18
68	ZnSe/ZnO Nano-Heterostructures for Enhanced Solar Light Hydrogen Generation. ChemistrySelect, 2017, 2, 9174-9180.	0.7	17
69	Synthesis and spectroscopic characterisation of silver–polyaniline nanocomposite. Materials Research Innovations, 2013, 17, 112-116.	1.0	16
70	Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight. Journal of Materials Science: Materials in Electronics, 2019, 30, 7031-7042.	1.1	16
71	Electrochemical energy storage systems: India perspective. Bulletin of Materials Science, 2020, 43, 1.	0.8	16
72	Surface modified Li ₄ Ti ₅ O ₁₂ by paper templated approach for enhanced interfacial Li ⁺ charge transfer in Li-ion batteries. RSC Advances, 2018, 8, 38391-38399.	1.7	15

#	Article	IF	CITATIONS
73	Photodegradation of spent wash, a sugar industry waste, using vanadium-doped TiO ₂ nanoparticles. RSC Advances, 2018, 8, 20394-20405.	1.7	14
74	Silicon nanoparticle-sandwiched ultrathin MoS ₂ –graphene layers as an anode material for Li-ion batteries. Materials Chemistry Frontiers, 2019, 3, 587-596.	3.2	14
75	Enhanced performance of PTB7-Th:PCBM based active layers in ternary organic solar cells. RSC Advances, 2019, 9, 7457-7463.	1.7	14
76	Polyaniline-wrapped MnMoO ₄ as an active catalyst for hydrogen production by electrochemical water splitting. Dalton Transactions, 2022, 51, 6027-6035.	1.6	14
77	Hierarchical CdMoO ₄ nanowire–graphene composite for photocatalytic hydrogen generation under natural sunlight. RSC Advances, 2018, 8, 13764-13771.	1.7	13
78	Fragmented lignin-assisted synthesis of a hierarchical ZnO nanostructure for ammonia gas sensing. RSC Advances, 2019, 9, 2484-2492.	1.7	13
79	Solar-light-active mesoporous Cr–TiO2 for photodegradation of spent wash: an in-depth study using QTOF LC-MS. RSC Advances, 2019, 9, 4226-4238.	1.7	13
80	N-Enriched carbon nanofibers for high energy density supercapacitors and Li-ion batteries. RSC Advances, 2019, 9, 36075-36081.	1.7	13
81	Characterisation of spectroscopic and magneto-optical faraday rotation in Mn2+- doped CdS quantum dots in a silicate glass. Journal of Alloys and Compounds, 2020, 817, 152696.	2.8	13
82	Imidazolium-Based Dicationic Ionic Liquid Electrolyte: Strategy toward Safer Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 8297-8304.	3.2	13
83	Mesoporous cadmium bismuth niobate (CdBi 2 Nb 2 O 9) nanospheres for hydrogen generation under visible light. Journal of Energy Chemistry, 2017, 26, 433-439.	7.1	11
84	Plasmonic Ag decorated CdMoO ₄ as an efficient photocatalyst for solar hydrogen production. RSC Advances, 2019, 9, 28525-28533.	1.7	11
85	Ethoxyâ€Ester Functionalized Imidazolium based Ionic Liquids for Lithium Ion Batteries. ChemistrySelect, 2018, 3, 6255-6261.	0.7	10
86	Synergic effects of the decoration of nickel oxide nanoparticles on silicon for enhanced electrochemical performance in LIBs. Nanoscale Advances, 2020, 2, 823-832.	2.2	10
87	Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries. Energy & Fuels, 2022, 36, 4999-5008.	2.5	10
88	Highly Crystalline Ordered Cu-dopedTiO2Nanostructure by Paper Templated Method: Hydrogen Production and Dye Degradation under Natural Sunlight. Journal of Composites Science, 2020, 4, 48.	1.4	9
89	Unique hierarchical SiO ₂ @ZnIn ₂ S ₄ marigold flower like nanoheterostructure for solar hydrogen production. RSC Advances, 2021, 11, 14399-14407.	1.7	9
90	Solid-State Synthesis of Layered MoS2 Nanosheets with Graphene for Sodium-Ion Batteries. Crystals, 2021, 11, 660.	1.0	9

#	Article	IF	CITATIONS
91	3D Hierarchical heterostructures of Bi ₂ W _{1â^`x} Mo _x O ₆ with enhanced oxygen evolution reaction from water under natural sunlight. New Journal of Chemistry, 2018, 42, 17597-17605.	1.4	8
92	Hierarchical novel <scp> NiCo ₂ O ₄ </scp> / <scp> BiVO ₄ </scp> hybrid heterostructure as an advanced anode material for rechargeable lithium ion battery. International Journal of Energy Research, 2020, 44, 12126-12135.	2.2	8
93	A nanostructured SnO ₂ /Ni/CNT composite as an anode for Li ion batteries. RSC Advances, 2021, 11, 19531-19540.	1.7	8
94	Synergetic Strategy for the Fabrication of Self-Standing Distorted Carbon Nanofibers with Heteroatom Doping for Sodium-Ion Batteries. ACS Omega, 2021, 6, 15686-15697.	1.6	8
95	Facilitated Lithium Storage in Hierarchical Microsphere of Cu ₂ Sâ€MoS ₂ Ultrathin Nanosheets. ChemistrySelect, 2018, 3, 11020-11026.	0.7	7
96	A green approach: scalable dry media synthesis of a γ-TaON photocatalyst for solar H ₂ production and rhodamine B degradation. Sustainable Energy and Fuels, 2020, 4, 4671-4678.	2.5	7
97	Efficient solar light-driven hydrogen generation using an Sn ₃ O ₄ nanoflake/graphene nanoheterostructure. RSC Advances, 2021, 11, 29877-29886.	1.7	7
98	Architecture of NaFe(MoO4)2 as a novel anode material for rechargeable lithium and sodium ion batteries. Applied Surface Science, 2021, 559, 149903.	3.1	7
99	Engineering microstructure of LiFe(MoO4)2 as an advanced anode material for rechargeable lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2021, 32, 24273-24284.	1.1	7
100	Architecture of 2D MoS2 nanosheets and 3D CdMoS4 marigold flowers: Consequence of annealing on field emission performance. Microporous and Mesoporous Materials, 2016, 225, 573-579.	2.2	6
101	Multilayered Vanadium Carbide-Reduced Graphene Oxide (VC@rGO) Nanocomposite as an Ultrahigh-Capacity Anode Material for Li- and Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1972-1983.	2.5	6
102	lonic Liquid-Responsive Phase Transfer of Gold Nanoparticles: Anionic Metathesis. Langmuir, 2019, 35, 9213-9218.	1.6	5
103	Hierarchical Nanostructured Benzoic Naphthalene Tetracarboxylic Diâ€imide Organic Cathode for Lithium Ion Battery. ChemistrySelect, 2020, 5, 2157-2163.	0.7	5
104	Engendering 0-D to 1-D PbCrO ₄ nanostructures and their visible light enabled photocatalytic H ₂ S splitting. New Journal of Chemistry, 2017, 41, 4000-4005.	1.4	4
105	Facile template free approach for the large-scale solid phase synthesis of nanocrystalline XIn2S4 (X =) Tj ETQq1 3 9634-9646.	l 0.78431 1.4	4 rgBT /Overl 4
106	Sunlight mediated degradation of spent wash using hydrothermally synthesized orthorhombic shaped Cu–TiO ₂ nanoparticles. New Journal of Chemistry, 2020, 44, 17724-17734.	1.4	3
107	MoS ₂ and CdMoS ₄ nanostructure-based UV light photodetectors. Nanoscale Advances, 2021, 3, 4799-4803.	2.2	3
108	Stannic oxide spherical nanoparticles: an anode material with long-term cyclability for Li-ion rechargeable batteries. Materials Research Express, 2017, 4, 085026.	0.8	2

#	Article	IF	CITATIONS
109	Synergy of a heteroatom (P–F) in nanostructured Sn3O4 as an anode for sodium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 2678-2687.	2.5	1
110	A Nanostructured Mo 2 Câ€rGO Heterostructure as a stable Anode with ultraâ€high capacity for Lithiumâ€lon Battery**. ChemistrySelect, 2022, 7, .	0.7	0