Stephen J Pennycook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3932893/publications.pdf

Version: 2024-02-01

815 papers 57,150 citations

124 h-index 2033 205 g-index

873 all docs

873 docs citations

873 times ranked

44936 citing authors

#	Article	IF	CITATIONS
1	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	31.5	1,533
2	Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5, 4695.	12.8	1,413
3	Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010, 464, 571-574.	27.8	1,138
4	High-resolution Z-contrast imaging of crystals. Ultramicroscopy, 1991, 37, 14-38.	1.9	836
5	Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO ₂ :Y ₂ O ₃ /SrTiO ₃ Heterostructures. Science, 2008, 321, 676-680.	12.6	675
6	Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolkâ€Structured Carbon Nanocomposites. Angewandte Chemie - International Edition, 2011, 50, 6799-6802.	13.8	674
7	Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature, 1988, 336, 565-567.	27.8	638
8	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73-80.	16.0	608
9	High-resolution incoherent imaging of crystals. Physical Review Letters, 1990, 64, 938-941.	7.8	587
10	Monolayer PtSe ₂ , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Letters, 2015, 15, 4013-4018.	9.1	560
11	High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371, 830-834.	12.6	546
12	ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy. Advanced Materials, 2002, 14, 1841-1843.	21.0	528
13	Defect Engineering of Oxygenâ€Deficient Manganese Oxide to Achieve Highâ€Performing Aqueous Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1803815.	19.5	504
14	Z-contrast stem for materials science. Ultramicroscopy, 1989, 30, 58-69.	1.9	486
15	Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature, 1993, 366, 143-146.	27.8	483
16	Direct Sub-Angstrom Imaging of a Crystal Lattice. Science, 2004, 305, 1741-1741.	12.6	463
17	Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Letters, 2014, 14, 442-449.	9.1	463
18	Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7â~Îfilms. Superconductor Science and Technology, 2005, 18, 1533-1538.	3.5	443

#	Article	IF	CITATIONS
19	Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO ₃ films. Science, 2015, 348, 547-551.	12.6	430
20	Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy, 1999, 78, 111-124.	1.9	408
21	Hollow Co ₃ O ₄ Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solidâ€State Zincâ€"Air Batteries. Advanced Materials, 2017, 29, 1704117.	21.0	407
22	High thermoelectric performance in low-cost SnS _{0.91} Se _{0.09} crystals. Science, 2019, 365, 1418-1424.	12.6	395
23	The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy and Environmental Science, 2017, 10, 528-537.	30.8	386
24	Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zincâ-'Air Battery Cathodes. ACS Catalysis, 2018, 8, 8961-8969.	11.2	364
25	Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures. Advanced Materials, 2003, 15, 526-529.	21.0	344
26	Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Applied Physics Letters, 1998, 72, 2987-2989.	3.3	318
27	Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. Journal of the American Chemical Society, 2016, 138, 15459-15464.	13.7	310
28	Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces. Physical Review Letters, 2010, 105, 087204.	7.8	308
29	Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. Journal of the American Chemical Society, 2020, 142, 4472-4480.	13.7	304
30	Spectroscopic Imaging of Single Atoms Within a Bulk Solid. Physical Review Letters, 2004, 92, 095502.	7.8	299
31	Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. Journal of the American Chemical Society, 2019, 141, 13987-13994.	13.7	296
32	Direct Imaging of the Atomic Configuration of Ultradispersed Catalysts. Science, 1996, 274, 413-415.	12.6	291
33	Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature, 2004, 428, 730-733.	27.8	289
34	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 2019, 9, 10166-10173.	11.2	284
35	Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Materials, 2013, 12, 397-402.	27.5	283
36	Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Materials, 2012, 11, 888-894.	27.5	282

#	Article	IF	CITATIONS
37	Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes. Physical Review Letters, 1998, 80, 5560-5563.	7.8	278
38	Atomic-resolution imaging of oxidation states in manganites. Physical Review B, 2009, 79, .	3.2	274
39	Cactusâ€Like NiCoP/NiCoâ€OH 3D Architecture with Tunable Composition for Highâ€Performance Electrochemical Capacitors. Advanced Functional Materials, 2018, 28, 1800036.	14.9	274
40	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	16.0	273
41	Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Physical Review B, 2013, 88, .	3.2	271
42	p-type doping of MoS ₂ thin films using Nb. Applied Physics Letters, 2014, 104, 092104.	3.3	268
43	Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Ã Information Limit. Microscopy and Microanalysis, 2008, 14, 469-477.	0.4	266
44	Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4, 1924.	12.8	261
45	Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells. Physical Review Letters, 2014, 112, 156103.	7.8	258
46	Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. Physical Review Letters, 1993, 71, 1744-1747.	7.8	253
47	Chemically Exfoliated VSe ₂ Monolayers with Roomâ€Temperature Ferromagnetism. Advanced Materials, 2019, 31, e1903779.	21.0	251
48	ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metalâ€Organic Frameworks for ppbâ€Level Gas Sensing. Advanced Materials, 2019, 31, e1807161.	21.0	251
49	Metal–organic framework derived hollow CoS ₂ nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons, 2017, 2, 342-348.	8.0	247
50	Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 243-250.	18.0	244
51	Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy, 2019, 61, 54-59.	16.0	243
52	Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu ₂ Te. Journal of the American Chemical Society, 2017, 139, 18732-18738.	13.7	230
53	Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nature Nanotechnology, 2014, 9, 436-442.	31.5	228
54	Atomic Arrangement of Iodine Atoms inside Single-Walled Carbon Nanotubes. Physical Review Letters, 2000, 84, 4621-4624.	7.8	224

#	Article	IF	CITATIONS
55	Direct Determination of the Chemical Bonding of Individual Impurities in Graphene. Physical Review Letters, 2012, 109, 206803.	7.8	222
56	On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys. Acta Materialia, 2001, 49, 2827-2841.	7.9	221
57	Structural origin of reduced critical currents at YBa2Cu3O7–δ grain boundaries. Nature, 1991, 351, 47-49.	27.8	216
58	Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3044-3048.	7.1	216
59	Interface control of bulk ferroelectric polarization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9710-9715.	7.1	212
60	Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry. Physical Review Letters, 2010, 105, 227203.	7.8	211
61	Epitaxial Growth of Centimeter-Scale Single-Crystal MoS ₂ Monolayer on Au(111). ACS Nano, 2020, 14, 5036-5045.	14.6	211
62	Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures. Nano Letters, 2006, 6, 1496-1501.	9.1	210
63	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	19.5	210
64	Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Applied Physics Letters, 2005, 87, 034104.	3.3	206
65	Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surface Science Reports, 2007, 62, 111-157.	7.2	205
66	Phase Diagram and Superconducting Dome of Infinite-Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Nd</mml:mi></mml:mrow><mml:mrow><mr 125,="" 147003.<="" 2020,="" film.="" letters,="" physical="" review="" td="" thin=""><td>nl:mn⁸>1<!--</td--><td>204 mml:mn><mr< td=""></mr<></td></td></mr></mml:mrow></mml:msub></mml:mrow></mml:math>	nl:mn ⁸ >1 </td <td>204 mml:mn><mr< td=""></mr<></td>	204 mml:mn> <mr< td=""></mr<>
67	(Ni,Co)Se ₂ /NiCo‣DH Core/Shell Structural Electrode with the Cactus‣ike (Ni,Co)Se ₂ Core for Asymmetric Supercapacitors. Small, 2019, 15, e1803895.	10.0	203
68	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy and Environmental Science, $2018, 11, 2486-2495$.	30.8	200
69	Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Materials, 2004, 3, 143-146.	27.5	199
70	Efficient Hydrogen Evolution of Oxidized Niâ€N ₃ Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Advanced Materials, 2021, 33, e2003846.	21.0	198
71	Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotechnology, 2012, 7, 161-165.	31.5	196
72	Hierarchically Imprinted Sorbents for the Separation of Metal Ions. Journal of the American Chemical Society, 2000, 122, 992-993.	13.7	195

#	Article	IF	CITATIONS
73	Integrated Hierarchical Carbon Flake Arrays with Hollow Pâ€Doped CoSe ₂ Nanoclusters as an Advanced Bifunctional Catalyst for Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1804846.	14.9	192
74	Direct Determination of Grain Boundary Atomic Structure in SrTiO3. Science, 1994, 266, 102-104.	12.6	191
75	Synergizing Mo Single Atoms and Mo ₂ C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N ₂ Reduction to Ammonia. Advanced Materials, 2020, 32, e2002177.	21.0	190
76	Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy, 2018, 52, 246-255.	16.0	188
77	Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility. Journal of the American Chemical Society, 2018, 140, 15252-15260.	13.7	187
78	Bonding Arrangements at the Siâ^'SiO2 and SiCâ^'SiO2 Interfaces and a Possible Origin of their Contrasting Properties. Physical Review Letters, 2000, 84, 943-946.	7.8	186
79	Nanoâ€Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angewandte Chemie - International Edition, 2019, 58, 15076-15081.	13.8	185
80	Engineering covalently bonded 2D layered materials by self-intercalation. Nature, 2020, 581, 171-177.	27.8	185
81	Ultrasensitive 2D Bi ₂ O ₂ Se Phototransistors on Silicon Substrates. Advanced Materials, 2019, 31, e1804945.	21.0	183
82	Ni-Doped Cobalt–Cobalt Nitride Heterostructure Arrays for High-Power Supercapacitors. ACS Energy Letters, 2018, 3, 2462-2469.	17.4	182
83	Hydrogen and the Structure of the Transition Aluminas. Journal of the American Chemical Society, 1999, 121, 7493-7499.	13.7	179
84	Enhanced current transport at grain boundaries in high-Tc superconductors. Nature, 2005, 435, 475-478.	27.8	177
85	Growth and relaxation mechanisms of YBa2Cu3O7â^'x films. Physica C: Superconductivity and Its Applications, 1992, 202, 1-11.	1.2	176
86	Nonstoichiometry and the Electrical Activity of Grain Boundaries in SrTiO3. Physical Review Letters, 2001, 86, 4056-4059.	7.8	176
87	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of \hat{l}^3 -CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	11.2	174
88	Thermal stability and catalytic activity of gold nanoparticles supported on silica. Journal of Catalysis, 2009, 262, 92-101.	6.2	170
89	Direct observation of the core structures of threading dislocations in GaN. Applied Physics Letters, 1998, 72, 2680-2682.	3.3	169
90	Interactions of Hydrogen with CeO2. Journal of the American Chemical Society, 2001, 123, 6609-6611.	13.7	167

#	Article	IF	CITATIONS
91	Direct imaging of interfacial ordering in ultrathin (SimGen)psuperlattices. Physical Review Letters, 1991, 66, 750-753.	7.8	164
92	Molecular-Beam Epitaxy of Two-Dimensional In ₂ Se ₃ and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. Nano Letters, 2018, 18, 6340-6346.	9.1	163
93	Self-Limiting Growth of Strained Faceted Islands. Physical Review Letters, 1998, 80, 5156-5159.	7.8	162
94	Reversible, Nanometer-Scale Conductance Transitions in an Organic Complex. Physical Review Letters, 2000, 84, 1780-1783.	7.8	162
95	Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chemical Engineering Journal, 2019, 359, 1419-1426.	12.7	160
96	Subangstrom Resolution by Underfocused Incoherent Transmission Electron Microscopy. Physical Review Letters, 1998, 81, 4156-4159.	7.8	157
97	Entropy Engineering of SnTe: Multiâ€Principalâ€Element Alloying Leading to Ultralow Lattice Thermal Conductivity and Stateâ€ofâ€theâ€Art Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1802116.	19.5	157
98	Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect. Physical Review B, 2004, 69, .	3.2	152
99	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25147-25154.	8.0	152
100	Insulating Ferromagnetic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>LaCoO</mml:mi></mml:mrow><mml:mrow><a .<="" 112,="" 2014,="" by="" induced="" letters,="" of="" ordering="" oxygen="" phase="" physical="" review="" td="" vacancies.=""><td>(mms:mn></td><td>3 վ∎1ml:mn></td></mml:mrow></mml:msub></mml:mrow></mml:math>	(m m s:mn>	3 վ∎1 ml:mn>
101	The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7â^'δ thin films. Physica C: Superconductivity and Its Applications, 1998, 294, 183-193.	1.2	150
102	Mapping Octahedral Tilts and Polarization Across a Domain Wall in BiFeO ₃ from Z-Contrast Scanning Transmission Electron Microscopy Image Atomic Column Shape Analysis. ACS Nano, 2010, 4, 6071-6079.	14.6	150
103	Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics A: Materials Science and Processing, 2000, 70, 153-160.	2.3	148
104	Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2for Catalytic Oxidation of CO. Journal of Physical Chemistry B, 2005, 109, 10676-10685.	2.6	146
105	Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nature Communications, 2018, 9, 3197.	12.8	146
106	Morphological Evolution of Strained Films by Cooperative Nucleation. Physical Review Letters, 1996, 77, 1330-1333.	7.8	145
107	Symmetry-dependent field-free switching of perpendicular magnetization. Nature Nanotechnology, 2021, 16, 277-282.	31.5	145
108	Crown ethers in graphene. Nature Communications, 2014, 5, 5389.	12.8	142

#	Article	IF	Citations
109	Topological Defects: Origin of Nanopores and Enhanced Adsorption Performance in Nanoporous Carbon. Small, 2012, 8, 3283-3288.	10.0	139
110	Current-induced magnetization switching in all-oxide heterostructures. Nature Nanotechnology, 2019, 14, 939-944.	31.5	139
111	Epitaxial Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Films and Their Implementations in Memristors for Brainâ€nspired Computing. Advanced Functional Materials, 2018, 28, 1806037.	14.9	138
112	AC/AB Stacking Boundaries in Bilayer Graphene. Nano Letters, 2013, 13, 3262-3268.	9.1	137
113	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 2019, 141, 1141-1149.	13.7	137
114	The effect of interfacial layer properties on the performance of Hf-based gate stack devices. Journal of Applied Physics, 2006, 100, 094108.	2.5	135
115	Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature, 2003, 421, 347-350.	27.8	134
116	Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure. Applied Physics Letters, 2010, 97, .	3.3	133
117	Visible and Nearâ€Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO ₂ over Nanostructured Pd@Nb ₂ O ₅ . Advanced Science, 2016, 3, 1600189.	11.2	133
118	Metal–organic framework-derived hierarchical MoS ₂ /CoS ₂ nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 13339-13346.	10.3	133
119	Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces. Nano Letters, 2012, 12, 2499-2503.	9.1	132
120	Electron Transfer and Ionic Displacements at the Origin of the 2D Electron Gas at the LAO/STO Interface: Direct Measurements with Atomicâ€Column Spatial Resolution. Advanced Materials, 2012, 24, 3952-3957.	21.0	132
121	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Selfâ€Compensation and Mn Alloying. Small, 2018, 14, e1802615.	10.0	132
122	Kinetic Pathways to Strain Relaxation in the Si-Ge System. MRS Bulletin, 1996, 21, 31-37.	3.5	131
123	Quasicrystals as cluster aggregates. Nature Materials, 2004, 3, 759-767.	27.5	131
124	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in <i>n</i> -Type PbS. Journal of the American Chemical Society, 2020, 142, 4051-4060.	13.7	130
125	Nucleation of Single-Walled Carbon Nanotubes. Physical Review Letters, 2003, 90, 145501.	7.8	127
126	Point Defects and Localized Excitons in 2D WSe ₂ . ACS Nano, 2019, 13, 6050-6059.	14.6	127

#	Article	IF	Citations
127	Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy. Acta Materialia, 2013, 61, 350-359.	7.9	126
128	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 5862-5870.	11.2	126
129	Controlled Synthesis of CdS Nanoparticles inside Ordered Mesoporous Silica Using Ion-Exchange Reaction. Journal of Physical Chemistry B, 2001, 105, 6755-6758.	2.6	125
130	Correlated Optical Measurements and Plasmon Mapping of Silver Nanorods. Nano Letters, 2011, 11, 3482-3488.	9.1	125
131	Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder. Physical Review Letters, 2010, 104, 115901.	7.8	124
132	Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3- \hat{l} thin films. APL Materials, 2013, 1, .	5.1	124
133	Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy, 2006, 106, 1062-1068.	1.9	122
134	Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Physical Review B, 2007, 76, .	3.2	122
135	Strain-Driven Oxygen Deficiency in Self-Assembled, Nanostructured, Composite Oxide Films. ACS Nano, 2011, 5, 4783-4789.	14.6	122
136	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chemical Engineering Journal, 2019, 369, 988-995.	12.7	121
137	Atomically Dispersed Indium Sites for Selective CO ₂ Electroreduction to Formic Acid. ACS Nano, 2021, 15, 5671-5678.	14.6	121
138	Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nature Communications, 2020, 11, 3729.	12.8	120
139	Determination of the ordered structures of Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging. Applied Physics Letters, 1998, 72, 3145-3147.	3.3	119
140	Nonstoichiometric Dislocation Cores in Â-Alumina. Science, 2007, 316, 82-85.	12.6	119
141	Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires. Nano Letters, 2008, 8, 1016-1019.	9.1	119
142	Direct Imaging of Nanoscale Phase Separation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>La</mml:mi><mml:mn>0.55</mml:mn></mml:msub><mml:msub><mml 097202.<="" 103,="" 2009,="" colossal="" letters,="" magnetoresistance.="" physical="" relationship="" review="" td="" to=""><td>:m7>8ca<td>118 nml:mi><mm< td=""></mm<></td></td></mml></mml:msub></mml:math>	:m7>8ca <td>118 nml:mi><mm< td=""></mm<></td>	118 nml:mi> <mm< td=""></mm<>
143	Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nature Communications, 2020, 11, 4647.	12.8	117
144	Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2013, 135, 4149-4158.	13.7	116

#	Article	IF	Citations
145	Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy and Environmental Science, 2017, 10, 2420-2431.	30.8	116
146	In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics Letters, 2000, 76, 182-184.	3.3	115
147	Controlled Growth and Thicknessâ€Dependent Conductionâ€√ype Transition of 2D Ferrimagnetic Cr ₂ S ₃ Semiconductors. Advanced Materials, 2020, 32, e1905896.	21.0	114
148	"Charge Leakage―at LaMnO ₃ /SrTiO ₃ Interfaces. Advanced Materials, 2010, 22, 627-632.	21.0	113
149	Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married― Advanced Energy Materials, 2020, 10, 1903181.	19.5	113
150	Z-Contrast Transmission Electron Microscopy: Direct Atomic Imaging of Materials. Annual Review of Materials Research, 1992, 22, 171-195.	5 . 5	111
151	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	12.8	110
152	Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation. Applied Physics Letters, 1998, 73, 438-440.	3.3	108
153	Impurity-Induced Structural Transformation of a MgO Grain Boundary. Physical Review Letters, 1998, 81, 3675-3678.	7.8	108
154	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	12.2	108
155	Elemental mapping with elastically scattered electrons. Journal of Microscopy, 1986, 144, 229-249.	1.8	105
156	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Letters, 2018, 18, 482-490.	9.1	105
157	Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 2021, 16, 882-887.	31.5	105
158	Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore. Nature Communications, 2013, 4, 1650.	12.8	104
159	Growth of Nb-Doped Monolayer WS ₂ by Liquid-Phase Precursor Mixing. ACS Nano, 2019, 13, 10768-10775.	14.6	102
160	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	27.5	102
161	Atomic-Resolution Electron Energy Loss Spectroscopy Imaging in Aberration Corrected Scanning Transmission Electron Microscopy. Physical Review Letters, 2003, 91, 105503. Influence of defects on structural and magnetic properties of multifunctional mml:math	7.8	101
162	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mi></mml:mi></mml:msub><mml:mi mathvariant="normal">Ni</mml:mi><mml:mi mathvariant="normal">Ni</mml:mi><mml:mi mathvariant="normal">O</mml:mi><mml:mi></mml:mi>O<mml:mi></mml:mi></mml:mrow> thin films. Physical Review B, 2008, 77, .	3.2	101

#	Article	IF	Citations
163	Interplay of Octahedral Tilts and Polar Order in BiFeO ₃ Films. Advanced Materials, 2013, 25, 2497-2504.	21.0	101
164	Gigahertz Dielectric Polarization of Substitutional Single Niobium Atoms in Defective Graphitic Layers. Physical Review Letters, 2015, 115, 147601.	7.8	101
165	Interdiffusion, growth mechanisms, and critical currents in YBa2Cu3O7â^'x/PrBa2Cu3O7â^'x superlattices. Physical Review Letters, 1991, 67, 765-768.	7.8	99
166	Direct Observation of Dislocation Core Structures in CdTe/GaAs(001). Science, 1995, 269, 519-521.	12.6	99
167	Atomic structure of the quasicrystal Al72Ni2OCo8. Nature, 2000, 403, 266-267.	27.8	99
168	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy and Environmental Science, 2019, 12, 1969-1978.	30.8	99
169	Accurate structure determination from image reconstruction in ADF STEM. Journal of Microscopy, 1998, 190, 159-170.	1.8	95
170	Structure and Chemistry of Yttriaâ€Stabilized Cubicâ€Zirconia Symmetric Tilt Grain Boundaries. Journal of the American Ceramic Society, 2001, 84, 1361-1368.	3.8	95
171	Nanoparticles of gold on -AlO produced by dc magnetron sputtering. Journal of Catalysis, 2005, 231, 151-158.	6.2	95
172	Dynamic Fluctuations in Ultrasmall Nanocrystals Induce White Light Emission. Nano Letters, 2012, 12, 3038-3042.	9.1	95
173	Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909.	13.7	94
174	Enhancement of flux pinning in YBa2Cu3O7â^Îthin films embedded with epitaxially grown Y2O3nanostructures using a multi-layering process. Superconductor Science and Technology, 2005, 18, 1502-1505.	3.5	93
175	Direct Imaging of Local Chemical Disorder and Columnar Vacancies in Ideal Decagonal Al-Ni-Co Quasicrystals. Physical Review Letters, 1998, 81, 5145-5148.	7.8	92
176	New model for damage accumulation in Si during selfâ€ion irradiation. Applied Physics Letters, 1989, 55, 2503-2505.	3.3	91
177	Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals. Journal of the American Chemical Society, 2009, 131, 5730-5731.	13.7	91
178	Direct Observation of Dopant Atom Diffusion in a Bulk Semiconductor Crystal Enhanced by a Large Size Mismatch. Physical Review Letters, 2014, 113, 155501.	7.8	91
179	The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3. Applied Physics Letters, 1999, 74, 2638-2640.	3.3	90
180	Surface Reconstruction and the Difference in Surface Acidity between \hat{I}^3 - and \hat{I} -Alumina. Journal of the American Chemical Society, 2001, 123, 26-29.	13.7	90

#	Article	IF	CITATIONS
181	Single-Crystal Organic Nanowires of Copper–Tetracyanoquinodimethane: Synthesis, Patterning, Characterization, and Device Applications. Angewandte Chemie - International Edition, 2007, 46, 2650-2654.	13.8	90
182	Atomic-Resolution Imaging of Spin-State Superlattices in Nanopockets within Cobaltite Thin Films. Nano Letters, 2011, 11, 973-976.	9.1	90
183	Direct experimental determination of the atomic structure at internal interfaces. Journal Physics D: Applied Physics, 1996, 29, 1779-1798.	2.8	89
184	Materials Advances through Aberration-Corrected Electron Microscopy. MRS Bulletin, 2006, 31, 36-43.	3. 5	89
185	Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3709-3733.	3.4	89
186	Three-Dimensional Location of a Single Dopant with Atomic Precision by Aberration-Corrected Scanning Transmission Electron Microscopy. Nano Letters, 2014, 14, 1903-1908.	9.1	89
187	<i>In Situ</i> Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO ₃ System. ACS Nano, 2017, 11, 6942-6949.	14.6	89
188	Observation of cathodoluminescence at single dislocations by STEM. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1980, 41, 589-600.	0.6	88
189	Onâ€Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie - International Edition, 2019, 58, 14089-14094.	13.8	86
190	Intrinsically Low Thermal Conductivity in BiSbSe ₃ : A Promising Thermoelectric Material with Multiple Conduction Bands. Advanced Functional Materials, 2019, 29, 1806558.	14.9	86
191	Giant piezoelectricity in oxide thin films with nanopillar structure. Science, 2020, 369, 292-297.	12.6	86
192	Prominent electrochromism through vacancy-order melting in a complex oxide. Nature Communications, 2012, 3, 799.	12.8	85
193	Atomic Column Resolved Electron Energy-Loss Spectroscopy. Physica Status Solidi A, 1998, 166, 327-342.	1.7	84
194	Electronic and Magnetic Reconstructions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>La</mml:mi><mml:mn>0.7</mml:mn></mml:msub><mml:msub><mml:race 106,<="" 2011,="" by="" controlled="" coupling="" enhanced="" interface.="" interlayer="" letters,="" of="" physical="" review="" td="" the=""><td>ni<i>%</i>S&<td>nl:86><mml:r< td=""></mml:r<></td></td></mml:race></mml:msub></mml:math>	ni <i>%</i> S& <td>nl:86><mml:r< td=""></mml:r<></td>	nl: 86 > <mml:r< td=""></mml:r<>
195	147205. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	12.8	83
196	From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy, 2013, 134, 113-125.	1.9	80
197	Quantitative Annular Dark Field Electron Microscopy Using Single Electron Signals. Microscopy and Microanalysis, 2014, 20, 99-110.	0.4	80
198	Band Edge Recombination in CdSe, CdS and CdS _{<i>x</i>} Se _{1â^²<i>x</i>} Alloy Nanocrystals Observed by Ultrafast Fluorescence Upconversion: The Effect of Surface Trap States. Journal of Physical Chemistry C, 2008, 112, 12736-12746.	3.1	79

#	Article	IF	CITATIONS
199	Epitaxial stabilization of Îμ-Fe2O3 (00l) thin films on SrTiO3 (111). Applied Physics Letters, 2010, 96, .	3.3	79
200	Atomically Resolved Mapping of Polarization and Electric Fields Across Ferroelectric/Oxide Interfaces by Zâ€contrast Imaging. Advanced Materials, 2011, 23, 2474-2479.	21.0	79
201	Direct Imaging of Cl―and Cu―Induced Shortâ€Circuit Efficiency Changes in CdTe Solar Cells. Advanced Energy Materials, 2014, 4, 1400454.	19.5	79
202	A New Class of Roomâ€Temperature Multiferroic Thin Films with Bismuthâ€Based Supercell Structure. Advanced Materials, 2013, 25, 1028-1032.	21.0	78
203	Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy, 2016, 28, 261-268.	16.0	78
204	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	30.8	78
205	Critical nuclei shapes in the stress-driven 2D-to-3D transition. Physical Review B, 1997, 56, R1700-R1703.	3.2	76
206	Excitonic Effects in Core-Excitation Spectra of Semiconductors. Physical Review Letters, 2000, 85, 2168-2171.	7.8	76
207	Stabilization of graphene nanopore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7522-7526.	7.1	76
208	Photoluminescence Upconversion by Defects in Hexagonal Boron Nitride. Nano Letters, 2018, 18, 6898-6905.	9.1	76
209	Crack-Like Sources of Dislocation Nucleation and Multiplication in Thin Films. Science, 1995, 268, 1161-1163.	12.6	75
210	Atomic Configurations and Energetics of Arsenic Impurities in a Silicon Grain Boundary. Physical Review Letters, 1998, 81, 132-135.	7.8	75
211	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advanced Materials, 2018, 30, e1802397.	21.0	75
212	Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon, 2011, 49, 4050-4058.	10.3	74
213	In-depth analysis of chloride treatments for thin-film CdTe solar cells. Nature Communications, 2016, 7, 13231.	12.8	74
214	Metal–organic framework-derived integrated nanoarrays for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9009-9018.	10.3	74
215	Dopant Segregation at Semiconductor Grain Boundaries through Cooperative Chemical Rebonding. Physical Review Letters, 1996, 77, 1306-1309.	7.8	73
216	HAADF-STEM imaging with sub-angstrom probes: a full Bloch wave analysis. Journal of Electron Microscopy, 2004, 53, 257-266.	0.9	73

#	Article	IF	CITATIONS
217	Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. Journal of Electron Microscopy, 2006, 55, 7-12.	0.9	73
218	s-Electron Ferromagnetism in Gold and Silver Nanoclusters. Nano Letters, 2007, 7, 3134-3137.	9.1	73
219	Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	10.0	73
220	Synergistic Compositional–Mechanical–Thermal Effects Leading to a Record High <i>zT</i> in n‶ype V ₂ VI ₃ Alloys Through Progressive Hot Deformation. Advanced Functional Materials, 2018, 28, 1803617.	14.9	73
221	Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14825-14832.	6.7	73
222	Nanoscale analysis of YBa2Cu3O7â^'x/La0.67Ca0.33MnO3 interfaces. Solid-State Electronics, 2003, 47, 2245-2248.	1.4	72
223	Insights into the physical chemistry of materials from advances in HAADF-STEM. Physical Chemistry Chemical Physics, 2015, 17, 3982-4006.	2.8	72
224	Z-Contrast Scanning Transmission Electron Microscopy. , 1999, , 161-207.		72
225	High Angle Dark Field STEM for Advanced Materials. Journal of Electron Microscopy, 1996, 45, 36-43.	0.9	71
226	Polytypoid structures in annealed In2O3â€"ZnO films. Applied Physics Letters, 1998, 73, 2585-2587.	3.3	71
227	Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology, 2006, 17, 3400-3411.	2.6	71
228	Direct measurements of the velocity and thickness of â€~â€~explosively'' propagating buried molten layers in amorphous silicon. Applied Physics Letters, 1986, 48, 1389-1391.	⁵ 3.3	70
229	Explanation of the Observed Dearth of Three-Coordinated Al on \hat{I}^3 -Alumina Surfaces. Journal of the American Chemical Society, 1999, 121, 10999-11001.	13.7	70
230	Modification of Vapor Phase Concentrations in MoS ₂ Growth Using a NiO Foam Barrier. ACS Nano, 2018, 12, 1339-1349.	14.6	70
231	Molecular Beam Epitaxy of Highly Crystalline MoSe ₂ on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 7562-7570.	14.6	70
232	Detection of nitrogen at {100} platelets in diamond. Nature, 1982, 298, 635-637.	27.8	69
233	Electronic Excitations in Graphene in the 1–50 eV Range: The π and π + σ Peaks Are Not Plasmons. Nano Letters, 2014, 14, 3827-3831.	9.1	69
234	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS ₂ . ACS Nano, 2020, 14, 4636-4645.	14.6	69

#	Article	IF	CITATIONS
235	Direct experimental observation of the local electronic structure at threading dislocations in metalorganic vapor phase epitaxy grown wurtzite GaN thin films. Applied Physics Letters, 2000, 76, 466-468.	3.3	68
236	Origin of Anomalous Pt-Pt Distances in the Pt/Alumina Catalytic System. ChemPhysChem, 2004, 5, 1893-1897.	2.1	68
237	Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catalysis Today, 2007, 122, 248-253.	4.4	68
238	Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy, 2009, 109, 172-176.	1.9	68
239	Molecular structure of vapor-deposited amorphous selenium. Journal of Applied Physics, 2016, 120, .	2.5	68
240	High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. Nano Energy, 2020, 70, 104559.	16.0	68
241	The atomic structure of asymmetric [001] tilt boundaries in SrTiO ₃ . Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 73, 625-641.	0.6	67
242	Interface structure and non-stoichiometry in HfO2 dielectrics. Applied Physics Letters, 2004, 85, 672-674.	3.3	66
243	Orbital-Occupancy versus Charge Ordering and the Strength of Electron Correlations in Electron-Doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaMnO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2007, 99, 036402.	7.8	66
244	Local valence and magnetic characteristics of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>/<mark>3.2</mark>/mml:mn></td><td>€6mml:msul</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	/ <mark>3.2</mark> /mml:mn>	€6mml:msul
245	Atomic-resolution spectroscopic imaging: past, present and future. Journal of Electron Microscopy, 2009, 58, 87-97.	0.9	66
246	Role of interfacial transition layers in VO2/Al2O3 heterostructures. Journal of Applied Physics, 2011, 110, .	2.5	66
247	Atomâ€byâ€Atom Fabrication of Monolayer Molybdenum Membranes. Advanced Materials, 2018, 30, e1707281.	21.0	66
248	Bulk Spin Torqueâ€Driven Perpendicular Magnetization Switching in <i>L</i> 1 ₀ FePt Single Layer. Advanced Materials, 2020, 32, e2002607.	21.0	66
249	THE BULK AND SURFACE STRUCTURE OF \hat{I}^3 -ALUMINA. Chemical Engineering Communications, 2000, 181, 107-135.	2.6	65
250	Core-hole effects on energy-loss near-edge structure. Ultramicroscopy, 2001, 86, 355-362.	1.9	65
251	Selective Nontemplated Adsorption of Organic Molecules on Nanofacets and the Role of Bonding Patterns. Physical Review Letters, 2006, 97, 156105.	7.8	65
252	Interpreting atomic-resolution spectroscopic images. Physical Review B, 2007, 76, .	3.2	64

#	Article	IF	CITATIONS
253	Depression and broadening of the superconducting transition in superlattices based onYBa2Cu3O7â~Î: Influence of the barrier layers. Physical Review Letters, 1991, 67, 1358-1361.	7.8	63
254	Single Atom Microscopy. Microscopy and Microanalysis, 2012, 18, 1342-1354.	0.4	63
255	Homoepitaxial Growth of Largeâ€Scale Highly Organized Transition Metal Dichalcogenide Patterns. Advanced Materials, 2018, 30, 1704674.	21.0	63
256	The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy, 2005, 102, 317-326.	1.9	62
257	Defectâ€Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control. Advanced Materials, 2010, 22, 314-322.	21.0	62
258	Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?. Journal of Physical Chemistry Letters, 2012, 3, 2303-2309.	4.6	62
259	Thin Dielectric Film Thickness Determination by Advanced Transmission Electron Microscopy. Microscopy and Microanalysis, 2003, 9, 493-508.	0.4	61
260	Spin-Valley Locking Effect in Defect States of Monolayer MoS ₂ . Nano Letters, 2020, 20, 2129-2136.	9.1	61
261	Atomic structure of Ba0.5Sr0.5TiO3 thin films on LaAlO3. Applied Physics Letters, 1999, 75, 2542-2544.	3.3	60
262	Aberration-Corrected Z-Contrast Scanning Transmission Electron Microscopy of CdSe Nanocrystals. Nano Letters, 2004, 4, 1279-1283.	9.1	60
263	Seeing the atoms more clearly: STEM imaging from the Crewe era to today. Ultramicroscopy, 2012, 123, 28-37.	1.9	60
264	The impact of STEM aberration correction on materials science. Ultramicroscopy, 2017, 180, 22-33.	1.9	60
265	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in <i>n</i> â€Type Ag <i>_n</i> Te ₁₀₀₊₂ <i>_n</i> (LIST), Advanced Energy Materials, 2019, 9, 1900414.	19.5	60
266	Two-Dimensional Metallic NiTe ₂ with Ultrahigh Environmental Stability, Conductivity, and Electrocatalytic Activity. ACS Nano, 2020, 14, 9011-9020.	14.6	60
267	The mechanism for polarity inversion of GaN via a thin AlN layer: Direct experimental evidence. Applied Physics Letters, 2007, 91, 203115.	3.3	59
268	Defect-mediated ferromagnetism in insulating Co-doped anatase <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn>2 films. Physical Review B, 2008, 78, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 <i>3</i> mml:m	ın 59/mml:msı
269	Reversible electric-field control of magnetization at oxide interfaces. Nature Communications, 2014, 5, 4215.	12.8	59
270	Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	59

#	Article	IF	Citations
271	Direct Imaging of Atomic Ordering in Undoped and Laâ€Doped Pb(Mg _{1/3} Nb _{2/3})O ₃ . Journal of the American Ceramic Society, 2000, 83, 181-88.	3.8	58
272	Nanoscale Topotactic Phase Transformation in SrFeO <i>_x</i> Epitaxial Thin Films for Highâ€Density Resistive Switching Memory. Advanced Materials, 2019, 31, e1903679.	21.0	58
273	Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Leadâ€Free Materials. Advanced Functional Materials, 2019, 29, 1902911.	14.9	58
274	Selective Patterned Growth of Singleâ€Crystal Ag–TCNQ Nanowires for Devices by Vapor–Solid Chemical Reaction. Advanced Functional Materials, 2008, 18, 3043-3048.	14.9	57
275	Watching domains grow: <i>In-situ</i> studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. Journal of Applied Physics, 2011, 110, .	2.5	57
276	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, e1900248.	10.0	57
277	Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nature Communications, 2021, 12, 3632.	12.8	57
278	Localization in elastic and inelastic scattering. Ultramicroscopy, 2003, 96, 313-322.	1.9	56
279	Interface dipole between two metallic oxides caused by localized oxygen vacancies. Physical Review B, 2012, 86, .	3.2	56
280	Edge Segregated Polymorphism in 2D Molybdenum Carbide. Advanced Materials, 2019, 31, e1808343.	21.0	56
281	Flexible and Wearable All-Solid-State Al–Air Battery Based on Iron Carbide Encapsulated in Electrospun Porous Carbon Nanofibers. ACS Applied Materials & Interfaces, 2019, 11, 1988-1995.	8.0	56
282	Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. ACS Sensors, 2020, 5, 1474-1481.	7.8	56
283	Step-driven lateral segregation and long-range ordering duringSixGe1â^'xepitaxial growth. Physical Review Letters, 1992, 68, 2062-2065.	7.8	55
284	Interplay between evolving surface morphology, atomic-scale growth modes, and ordering duringSixGe1â°xepitaxy. Physical Review Letters, 1993, 70, 2293-2296.	7.8	55
285	Self-organized bimetallic Ag–Co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity. Nanotechnology, 2012, 23, 275604.	2.6	55
286	Stable single-atom platinum catalyst trapped in carbon onion graphitic shells for improved chemoselective hydrogenation of nitroarenes. Carbon, 2019, 143, 378-384.	10.3	55
287	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	21.0	55
288	Investigation of the evolution of single domain (111)B CdTe films by molecular beam epitaxy on miscut (001)Si substrate. Journal of Applied Physics, 1998, 84, 4292-4299.	2.5	54

#	Article	IF	CITATIONS
289	Effect of oxygen concentration on the magnetic properties of La2CoMnO6 thin films. Applied Physics Letters, 2007, 91, .	3.3	54
290	Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging. Ultramicroscopy, 2015, 151, 122-129.	1.9	54
291	Oxygen-Vacancy-Induced Polar Behavior in (LaFeO3)2/(SrFeO3) Superlattices. Nano Letters, 2014, 14, 2694-2701.	9.1	53
292	Enhanced Thermoelectric and Mechanical Properties in Yb _{0.3} Co ₄ Sb ₁₂ with In Situ Formed CoSi Nanoprecipitates. Advanced Energy Materials, 2019, 9, 1902435.	19.5	53
293	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53
294	Atom Location by Axial-Electron-Channeling Analysis. Physical Review Letters, 1985, 54, 1543-1546.	7.8	52
295	Solidification of highly undercooled liquid silicon produced by pulsed laser melting of ion-implanted amorphous silicon: Time-resolved and microstructural studies. Journal of Materials Research, 1987, 2, 648-680.	2.6	52
296	Condensed phase growth of single-wall carbon nanotubes from laser annealed nanoparticulates. Applied Physics Letters, 2001, 78, 3307-3309.	3.3	52
297	Seeing oxygen disorder in YSZ/SrTiO ₃ colossal ionic conductor heterostructures using EELS. EPJ Applied Physics, 2011, 54, 33507.	0.7	52
298	Physics of grain boundaries in polycrystalline photovoltaic semiconductors. Journal of Applied Physics, 2015, 117, .	2.5	52
299	Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Physical Review B, 2005, 72, .	3.2	51
300	Carrier Separation at Dislocation Pairs in CdTe. Physical Review Letters, 2013, 111, 096403.	7.8	51
301	Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide. ACS Nano, 2018, 12, 1940-1948.	14.6	51
302	Ambipolar ferromagnetism by electrostatic doping of a manganite. Nature Communications, 2018, 9, 1897.	12.8	51
303	Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nature Communications, 2019, 10, 3052.	12.8	51
304	Phaseâ€Controlled Synthesis of Monolayer Ternary Telluride with a Random Local Displacement of Tellurium Atoms. Advanced Materials, 2019, 31, e1900862.	21.0	51
305	Medium Entropyâ€Enabled High Performance Cubic GeTe Thermoelectrics. Advanced Science, 2021, 8, 2100220.	11.2	51
306	Large-scaleab initiostudy of the binding and diffusion of a Ge adatom on the Si(100) surface. Physical Review B, 1994, 50, 2663-2666.	3.2	50

#	Article	IF	Citations
307	Tailoring Disorder and Dimensionality: Strategies for Improved Solid Oxide Fuel Cell Electrolytes. ChemPhysChem, 2009, 10, 1003-1011.	2.1	50
308	Two-Dimensional Metallic Vanadium Ditelluride as a High-Performance Electrode Material. ACS Nano, 2021, 15, 1858-1868.	14.6	49
309	Microstructure and properties of YBa2Cu3O9â^Î superconductors with transitions at 90 and near 290 K. Applied Physics Letters, 1987, 51, 940-942.	3.3	48
310	Z-contrast imaging and electron energy-loss spectroscopy analysis of chromium-doped diamond-like carbon films. Applied Physics Letters, 1999, 75, 2740-2742.	3.3	48
311	Response to Comment on "Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO ₂ :Y ₂ O ₃ /SrTiO ₃ Heterostructures― Science, 2009, 324, 465-465.	12.6	47
312	Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films. Nanotechnology, 2013, 24, 315602.	2.6	47
313	Modern approaches to studying gas adsorption in nanoporous carbons. Journal of Materials Chemistry A, 2013, 1, 9341.	10.3	47
314	Periodic Wrinkleâ€Patterned Singleâ€Crystalline Ferroelectric Oxide Membranes with Enhanced Piezoelectricity. Advanced Materials, 2020, 32, e2004477.	21.0	47
315	Vacancy-Driven Anisotropic Defect Distribution in the Battery-Cathode Material <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiFePO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> . Physical Review Letters. 2011. 107. 085507.	7.8	46
316	In-situ characterization by Near-Ambient Pressure XPS of the catalytically active phase of Pt/Al2O3 during NO and CO oxidation. Applied Catalysis B: Environmental, 2018, 220, 506-511.	20.2	46
317	Transientâ€Enhanced Diffusion during Furnace and Rapid Thermal Annealing of Ionâ€Implanted Silicon. Journal of the Electrochemical Society, 1985, 132, 1962-1968.	2.9	45
318	The effects of both deviation from stoichiometry and boron on grain boundaries in Ni ₃ Al. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 62, 659-676.	0.6	45
319	Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens. Microscopy and Microanalysis, 2010, 16, 54-63.	0.4	45
320	Study of single-electron excitations by electron microscopy II. Cathodoluminescence image contrast from localized energy transfers. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1980, 41, 809-827.	0.6	44
321	The Possibility and Implications of Dynamic Nanoparticle Surfaces. ACS Nano, 2013, 7, 8358-8365.	14.6	44
322	Flexoelectric Thin-Film Photodetectors. Nano Letters, 2021, 21, 2946-2952.	9.1	44
323	High resolution electron microscopy and microanalysis. Contemporary Physics, 1982, 23, 371-400.	1.8	43
324	Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy, 2007, 108, 17-28.	1.9	43

#	Article	IF	Citations
325	Magnetic "Dead―Layer at a Complex Oxide Interface. Physical Review Letters, 2008, 101, 247204.	7.8	43
326	STEM-EELS imaging of complex oxides and interfaces. MRS Bulletin, 2012, 37, 29-35.	3.5	43
327	Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4. Applied Physics Letters, 2012, 101, .	3.3	43
328	Atomic Structure of Luminescent Centers in High-Efficiency Ce-doped w-AlN Single Crystal. Scientific Reports, 2014, 4, 3778.	3.3	43
329	Quantitative comparison of bright field and annular bright field imaging modes for characterization of oxygen octahedral tilts. Ultramicroscopy, 2017, 181, 1-7.	1.9	43
330	Simultaneous Boost of Power Factor and Figureâ€ofâ€Merit in In–Cu Codoped SnTe. Small, 2019, 15, e1902493.	10.0	43
331	Chemical Ordering inAl72Ni2OCo8Decagonal Quasicrystals. Physical Review Letters, 2001, 86, 1542-1545.	7.8	42
332	Aberration measurement using the Ronchigram contrast transfer function. Ultramicroscopy, 2010, 110, 891-898.	1.9	42
333	Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. Journal of Materials Chemistry A, 2018, 6, 20214-20223.	10.3	42
334	Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nature Communications, 2019, 10, 3149.	12.8	42
335	Lowâ€temperature epitaxy of Si and Ge by direct ion beam deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 2135-2139.	2.1	41
336	Emerging Diluted Ferromagnetism in Highâ€∢i>T _c Superconductors Driven by Point Defect Clusters. Advanced Science, 2016, 3, 1500295.	11.2	41
337	High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors. Nano Letters, 2019, 19, 5595-5603.	9.1	41
338	Direct imaging of dopant distributions in silicon by scanning transmission electron microscopy. Applied Physics Letters, 1984, 45, 385-387.	3.3	40
339	On the origin of transverse incoherence in Z-contrast STEM. Microscopy (Oxford, England), 2001, 50, 227-233.	1.5	40
340	Z-contrast imaging of dislocation cores at the GaAs/Si interface. Applied Physics Letters, 2002, 81, 2728-2730.	3.3	40
341	Characterizing the Two- and Three-Dimensional Resolution of an Improved Aberration-Corrected STEM. Microscopy and Microanalysis, 2009, 15, 441-453.	0.4	40
342	Single atom visibility in STEM optical depth sectioning. Applied Physics Letters, 2016, 109, .	3.3	40

#	Article	IF	Citations
343	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 17359-17367.	8.0	40
344	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	21.0	40
345	Anomalous Hall magnetoresistance in a ferromagnet. Nature Communications, 2018, 9, 2255.	12.8	39
346	Electronegativityâ€Induced Charge Balancing to Boost Stability and Activity of Amorphous Electrocatalysts. Advanced Materials, 2022, 34, e2100537.	21.0	39
347	Defect-controlled electrocaloric effect in PbZrO ₃ thin films. Journal of Materials Chemistry C, 2018, 6, 10332-10340.	5.5	38
348	Healing of Planar Defects in 2D Materials via Grain Boundary Sliding. Advanced Materials, 2019, 31, e1900237.	21.0	38
349	Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Science China Materials, 2020, 63, 1759-1768.	6.3	38
350	First-principles study of rare earth adsorption at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\hat{l}^2</mml:mi><mml:msub><mml:mrow><mml:mtext>-Si</mml:mtext><td>າກໃຕກາດພະ</td><td>> < <mark>37</mark> > < mml:mn > 3</td></mml:mrow></mml:msub></mml:mrow></mml:math>	າ ກໃ ຕກາດພະ	> < <mark>37</mark> > < mml:mn > 3
351	Direct Observation of Atomic Dynamics and Silicon Doping at a Topological Defect in Graphene. Angewandte Chemie - International Edition, 2014, 53, 8908-8912.	13.8	37
352	A machine perspective of atomic defects in scanning transmission electron microscopy. InformaÄnÃ-MateriÃįly, 2019, 1, 359-375.	17.3	37
353	Selective Engineering of Chalcogen Defects in MoS ₂ by Low-Energy Helium Plasma. ACS Applied Materials & Defects, 2019, 11, 24404-24411.	8.0	37
354	Tailoring Interface Structure in Highly Strained YSZ/STO Heterostructures. Advanced Materials, 2011, 23, 5268-5274.	21.0	36
355	Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy, 2012, 119, 51-56.	1.9	36
356	Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity. Materials Science in Semiconductor Processing, 2017, 65, 64-76.	4.0	36
357	Orthorhombic Ti ₂ O ₃ : A Polymorphâ€Dependent Narrowâ€Bandgap Ferromagnetic Oxide. Advanced Functional Materials, 2018, 28, 1705657.	14.9	36
358	Hollow structure engineering of FeCo alloy nanoparticles electrospun in nitrogen-doped carbon enables high performance flexible all-solid-state zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 1747-1753.	4.9	36
359	Study of supported ruthenium catalysts by STEM. Journal of Microscopy, 1981, 124, 15-22.	1.8	35
360	Point defect trapping in solidâ€phase epitaxially grown siliconâ€antimony alloys. Journal of Applied Physics, 1984, 55, 837-840.	2.5	35

#	Article	lF	Citations
361	Step Instabilities: A New Kinetic Route to 3D Growth. Physical Review Letters, 1995, 75, 1582-1585.	7.8	35
362	Plume-induced stress in pulsed-laser deposited CeO2 films. Applied Physics Letters, 1999, 74, 2134-2136.	3.3	35
363	Zero loss peak deconvolution for bandgap EEL spectra. Journal of Electron Microscopy, 2000, 49, 517-524.	0.9	35
364	Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy. Ultramicroscopy, 2005, 104, 126-140.	1.9	35
365	Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces. Scientific Reports, 2015, 5, 17229.	3.3	35
366	Nanoscale doping profiles within CdTe grain boundaries and at the CdS/CdTe interface revealed by atom probe tomography and STEM EBIC. Solar Energy Materials and Solar Cells, 2016, 150, 95-101.	6.2	35
367	Applications of STEM-EELS to complex oxides. Materials Science in Semiconductor Processing, 2017, 65, 49-63.	4.0	35
368	Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nature Communications, 2015, 6, 6306.	12.8	34
369	Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors. Nature Communications, 2022, 13, 743.	12.8	34
370	Competition between Covalent Bonding and Charge Transfer at Complex-Oxide Interfaces. Physical Review Letters, 2014, 112, 196802.	7.8	33
371	Single-atom dynamics in scanning transmission electron microscopy. MRS Bulletin, 2017, 42, 644-652.	3.5	33
372	Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Advanced Materials, 2021, 33, e2101257.	21.0	33
373	Synthesis and atomic-level characterization of Ni nanoparticles in Al2O3 matrix. Applied Physics Letters, 2002, 81, 4204-4206.	3.3	32
374	Band Edge Dynamics in CdSe Nanocrystals Observed by Ultrafast Fluorescence Upconversion. Journal of Physical Chemistry C, 2008, 112, 436-442.	3.1	32
375	Electronic and crystal-field effects in the fine structure of electron energy-loss spectra of manganites. Physical Review B, 2009, 79, .	3.2	32
376	Spaceâ€confined microwave synthesis of ternaryâ€layered BiOCl crystals with highâ€performance ultraviolet photodetection. InformaÄnÃ-Materiály, 2020, 2, 593-600.	17.3	32
377	Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. Journal of Materials Chemistry A, 2020, 8, 17266-17275.	10.3	32
378	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM $<$ sub $>$ 0.01 $<$ /sub $>$ 5e. Journal of Materials Chemistry A, 2020, 8, 5699-5708.	10.3	32

#	Article	IF	CITATIONS
379	Transition metal atoms on different alumina phases: The role of subsurface sites on catalytic activity. Physical Review B, 2003, 67, .	3.2	31
380	Direct imaging of dislocation core structures by Z-contrast STEM. Philosophical Magazine, 2006, 86, 4699-4725.	1.6	31
381	Direct Observation of Inversion Domain Boundaries of GaN on <i>c</i> i>â€Sapphire at Subâ€Ã¥ngstrom Resolution. Advanced Materials, 2008, 20, 2162-2165.	21.0	31
382	Ferromagnet/Two-Dimensional Semiconducting Transition-Metal Dichalcogenide Interface with Perpendicular Magnetic Anisotropy. ACS Nano, 2019, 13, 2253-2261.	14.6	31
383	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	10.3	31
384	Engineering the photoresponse of liquid-exfoliated 2D materials by size selection and controlled mixing for an ultrasensitive and ultraresponsive photodetector. Materials Horizons, 2020, 7, 3325-3338.	12.2	31
385	Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites. Nanotechnology, 2006, 17, 5652-5658.	2.6	30
386	TEM and EELS measurements of interface roughness in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical Review B, 2009, 79, .	3.2	30
387	Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals. Acta Materialia, 2013, 61, 1691-1704.	7.9	30
388	Precipitation of binary quasicrystals along dislocations. Nature Communications, 2018, 9, 809.	12.8	30
389	Material structure, properties, and dynamics through scanning transmission electron microscopy. Journal of Analytical Science and Technology, 2018, 9, 11.	2.1	30
390	Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Applied Energy Materials, 2019, 2, 8236-8243.	5.1	30
391	A Coherently Strained Monoclinic [111]PbTiO ₃ Film Exhibiting Zero Poisson's Ratio State. Advanced Functional Materials, 2019, 29, 1901687.	14.9	30
392	Coherent Sb/CuTe Core/Shell Nanostructure with Large Strain Contrast Boosting the Thermoelectric Performance of nâ€Type PbTe. Advanced Functional Materials, 2021, 31, 2007340.	14.9	30
393	Symmetry of the Underlying Lattice in (K,Na)NbO ₃ -Based Relaxor Ferroelectrics with Large Electromechanical Response. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7461-7469.	8.0	30
394	Reversible hydrogen control of antiferromagnetic anisotropy in \hat{l}_{\pm} -Fe2O3. Nature Communications, 2021, 12, 1668.	12.8	30
395	Formation of stable dopant interstitials during ion implantation of silicon. Journal of Materials Research, 1986, 1, 476-492.	2.6	29
396	Atomicâ€resolution electron energyâ€loss spectroscopy in the scanning transmission electron microscope. Journal of Microscopy, 1995, 180, 230-237.	1.8	29

#	Article	IF	Citations
397	The effect of As passivation on the molecular beam epitaxial growth of high-quality single-domain CdTe(111)B on Si(111) substrates. Applied Physics Letters, 1999, 75, 349-351.	3.3	29
398	Incorporation of Sb in InAsâ^•GaAs quantum dots. Applied Physics Letters, 2007, 91, 263105.	3.3	29
399	Symmetrical interfacial reconstruction and magnetism in La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3heterostructures. Physical Review B, 2011, 84, .	3.2	29
400	Domain epitaxy in TiO2/ \hat{l} ±-Al2O3 thin film heterostructures with Ti2O3 transient layer. Applied Physics Letters, 2012, 100, .	3.3	29
401	Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography. Nature Communications, 2014, 5, 5431.	12.8	29
402	Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene. Physical Review B, 2015, 92, .	3.2	29
403	Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy, 2018, 194, 182-192.	1.9	29
404	Synergistic boost of output power density and efficiency in In-Li–codoped SnTe. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21998-22003.	7.1	29
405	Comprehensive Investigation on the Thermoelectric Properties of pâ€Type PbTeâ€PbSeâ€PbS Alloys. Advanced Electronic Materials, 2019, 5, 1900609.	5.1	29
406	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	11.2	29
407	Sublattice Resolution Structural and Chemical Analysis of Individual CdSe Nanocrystals Using Atomic Number Contrast Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 361-369.	2.6	28
408	Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning, 2008, 30, 287-298.	1.5	28
409	Few-Layer Graphene as a Support Film for Transmission Electron Microscopy Imaging of Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2886-2892.	8.0	28
410	Thickness dependence of the exchange bias in epitaxial manganite bilayers. Physical Review B, 2009, 79, .	3.2	28
411	STEM imaging of single Pd atoms in activated carbon fibers considered for hydrogen storage. Carbon, 2011, 49, 4059-4063.	10.3	28
412	S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1636-1643.	2.5	28
413	Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bulletin, 2017, 42, 637-643.	3.5	28
414	Remarkably Enhanced Negative Electrocaloric Effect in PbZrO ₃ Thin Film by Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36863-36870.	8.0	28

#	Article	IF	Citations
415	The Role of Ferroelectric Polarization in Resistive Memory Properties of Metal/Insulator/Semiconductor Tunnel Junctions: A Comparative Study. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32935-32942.	8.0	28
416	Epitaxial growth of Y2O3:Eu thin films on LaAlO3. Applied Physics Letters, 1999, 75, 2223-2225.	3.3	27
417	Atomic Structure of a 36.8 (210) Tilt Grain Boundary in TiO ₂ . Journal of the American Ceramic Society, 1997, 80, 499-502.	3.8	27
418	Spatial Resolution and Information Transfer in Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2008, 14, 36-47.	0.4	27
419	Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains. Nano Letters, 2012, 12, 1229-1234.	9.1	27
420	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	21.0	27
421	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Materials Horizons, 2019, 6, 1548-1570.	12.2	27
422	Controlling the Magnetic Properties of LaMnO 3 /SrTiO 3 Heterostructures by Stoichiometry and Electronic Reconstruction: Atomicâ€Scale Evidence. Advanced Materials, 2019, 31, 1901386.	21.0	27
423	Room Temperature Commensurate Charge Density Wave on Epitaxially Grown Bilayer 2H-Tantalum Sulfide on Hexagonal Boron Nitride. ACS Nano, 2020, 14, 3917-3926.	14.6	27
424	Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity. Journal of the American Chemical Society, 2020, 142, 2948-2955.	13.7	27
425	Formation of low dislocation density siliconâ€onâ€insulator by a single implantation and annealing. Applied Physics Letters, 1990, 57, 156-158.	3.3	26
426	[11¯00]â¬̂•(1102)twin boundaries in wurtziteZnOand group-III-nitrides. Physical Review B, 2005, 71, .	3.2	26
427	Atomic ordering at an amorphous/crystal interface. Applied Physics Letters, 2006, 89, 051908.	3.3	26
428	Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited). Journal of Applied Physics, 2015, 117, .	2.5	26
429	High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics. Journal of Materials Chemistry A, 2018, 6, 23773-23779.	10.3	26
430	High yield electrochemical exfoliation synthesis of tin selenide quantum dots for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23958-23963.	10.3	26
431	Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator. Communications Physics, 2019, 2, .	5.3	26
432	Enhanced mechanical and thermoelectric properties enabled by hierarchical structure in medium-temperature Sb2Te3 based alloys. Nano Energy, 2020, 78, 105228.	16.0	26

#	Article	IF	CITATIONS
433	New interface structure forAâ€type CoSi2/Si(111). Applied Physics Letters, 1994, 64, 2409-2411.	3.3	25
434	Atomic-scale manipulation of potential barriers at SrTiO3 grain boundaries. Applied Physics Letters, 2005, 87, 121917.	3.3	25
435	LDA+U/GGA+U calculations of structural and electronic properties of CdTe: Dependence on the effective U parameter. Computational Materials Science, 2015, 98, 18-23.	3.0	25
436	Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy. ACS Nano, 2019, 13, 9541-9550.	14.6	25
437	New Family of Plasmonic Photocatalysts without Noble Metals. Chemistry of Materials, 2019, 31, 2320-2327.	6.7	25
438	New insights into the role of dislocation engineering in N-type filled skutterudite CoSb ₃ . Journal of Materials Chemistry C, 2019, 7, 13622-13631.	5.5	25
439	Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices. Advanced Materials, 2020, 32, e1907645.	21.0	25
440	Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Science Advances, 2021, 7, eabh2716.	10.3	25
441	Onâ€Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie, 2019, 131, 14227-14232.	2.0	24
442	Electric Field Control of the Magnetic Weyl Fermion in an Epitaxial SrRuO ₃ (111) Thin Film. Advanced Materials, 2021, 33, e2101316.	21.0	24
443	Heteroepitaxy of GaAs on Si and Ge using alternating, lowâ€energy ion beams. Applied Physics Letters, 1989, 54, 1439-1441.	3.3	23
444	Cuspidal pit formation during the growth of SixGe1â^'x strained films. Applied Physics Letters, 1995, 66, 34-36.	3.3	23
445	Synthesis of spherical luminescent particulate coatings. Journal of Applied Physics, 1999, 86, 1759-1761.	2.5	23
446	Ab initiocalculations of rigid-body displacements at the $\hat{1}$ £5 (210) tilt grain boundary inTiO2. Physical Review B, 2000, 61, 15645-15648.	3.2	23
447	Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO3-buffered ferroelectric BaTiO3 film on GaAs. Applied Physics Letters, 2015, 107, .	3.3	23
448	Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science, 2019, 6, 1802093.	11.2	23
449	From Selfâ€Assembly Hierarchical hâ€BN Patterns to Centimeterâ€Scale Uniform Monolayer hâ€BN Film. Advanced Materials Interfaces, 2019, 6, 1801493.	3.7	23
450	MoS ₂ /Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness. Advanced Materials, 2020, 32, e2002704.	21.0	23

#	Article	IF	CITATIONS
451	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 8518-8527.	8.0	23
452	Interface-Induced Enhancement of Ferromagnetism in Insulating LaMnO ₃ Ultrathin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44931-44937.	8.0	23
453	The Role of the Nanoscale in Surface Reactions:CO2on CdSe. Physical Review Letters, 2002, 89, 075506.	7.8	22
454	Flux pinning and critical currents at low-angle grain boundaries in high-temperature superconductors. Applied Physics Letters, 2002, 81, 2803-2805.	3.3	22
455	Scanning Transmission Electron Microscopy for Nanostructure Characterization., 2006, , 152-191.		22
456	Atomic-scale studies of cobalt distribution in Co–TiO2 anatase thin films: Processing, microstructure, and the origin of ferromagnetism. Journal of Applied Physics, 2006, 99, 08M114.	2.5	22
457	Interfacial structure in silicon nitride sintered with lanthanide oxide. Journal of Materials Science, 2006, 41, 4405-4412.	3.7	22
458	One-dimensional electron transport in Cu-tetracyanoquinodimethane organic nanowires. Applied Physics Letters, 2007, 90, 193115.	3.3	22
459	Synthesis and characterization of p–n homojunction-containing zinc oxide nanowires. Nanoscale, 2013, 5, 2259.	5.6	22
460	Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition. Nanotechnology, 2015, 26, 405704.	2.6	22
461	Oxygen Stoichiometry Effect on Polar Properties of LaAlO ₃ /SrTiO ₃ . Advanced Functional Materials, 2018, 28, 1707159.	14.9	22
462	Domain Engineering in ReS ₂ by Coupling Strain during Electrochemical Exfoliation. Advanced Functional Materials, 2020, 30, 2003057.	14.9	22
463	Spatially resolved measurement of substitutional dopant concentrations in semiconductors. Applied Physics Letters, 1984, 44, 547-549.	3.3	21
464	Simulation of Spatially Resolved Electron Energy Loss Near-Edge Structure for Scanning Transmission Electron Microscopy. Physical Review Letters, 2012, 109, 246101.	7.8	21
465	Ultra-high resolution electron microscopy. Reports on Progress in Physics, 2017, 80, 026101.	20.1	21
466	High-Concentration Niobium-Substituted WS2 Basal Domains with Reconfigured Electronic Band Structure for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34862-34868.	8.0	21
467	Photonâ€controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis. Applied Physics Letters, 1988, 52, 1868-1870.	3.3	20
468	Calculation of integrated intensities in aberration-corrected Z-contrast images. Journal of Electron Microscopy, 2011, 60, 29-33.	0.9	20

#	Article	IF	CITATIONS
469	Microscopy: Hasten high resolution. Nature, 2014, 515, 487-488.	27.8	20
470	Study of unique and highly crystalline MoS ₂ /MoO ₂ nanostructures for electro chemical applications. Materials Research Letters, 2019, 7, 275-281.	8.7	20
471	NiFe Layered Double-Hydroxide Nanosheets on a Cactuslike (Ni,Co)Se ₂ Support for Water Oxidation. ACS Applied Nano Materials, 2019, 2, 325-333.	5.0	20
472	Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition. ACS Nano, 2020, 14, 3290-3298.	14.6	20
473	Growth mechanisms and superconductivity of ultrathin Y1Ba2Cu3O7â^'xepitaxial films on (001) MgO substrates. Applied Physics Letters, 1993, 62, 3363-3365.	3.3	19
474	Fe2O3/Cu2O heterostructured nanocrystals. Journal of Materials Chemistry A, 2014, 2, 8525-8533.	10.3	19
475	Oxygen Disorder, a Way to Accommodate Large Epitaxial Strains in Oxides. Advanced Materials Interfaces, 2015, 2, 1500344.	3.7	19
476	Anatase TiO ₂ â€"A Model System for Large Polaron Transport. ACS Applied Materials & lnterfaces, 2018, 10, 38201-38208.	8.0	19
477	Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO _x . ACS Applied Materials & Interfaces, 2020, 12, 21883-21893.	8.0	19
478	Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. Nature Communications, 2021, 12, 2841.	12.8	19
479	Z-Contrast Imaging of Grain-Boundary Core Structures in Semiconductors. MRS Bulletin, 1997, 22, 53-57.	3.5	18
480	Structure determination of a planar defect in SrBi2Ta2O9. Applied Physics Letters, 1999, 75, 1961-1963.	3.3	18
481	Aberration-Corrected Scanning Transmission Electron Microscopy: The Potential for Nano- and Interface Science. International Journal of Materials Research, 2003, 94, 350-357.	0.8	18
482	Atomic scale characterization of complex oxide interfaces. Journal of Materials Science, 2006, 41, 4389-4393.	3.7	18
483	Aberration-corrected STEM: current performance and future directions. Journal of Physics: Conference Series, 2006, 26, 7-12.	0.4	18
484	Image simulation for electron energy loss spectroscopy. Micron, 2008, 39, 676-684.	2.2	18
485	Binary Controls on Interfacial Magnetism in Manganite Heterostructures. Advanced Functional Materials, 2018, 28, 1801766.	14.9	18
486	Percolated Strain Networks and Universal Scaling Properties of Strain Glasses. Physical Review Letters, 2019, 123, 015701.	7.8	18

#	Article	IF	Citations
487	Outstanding Piezoelectric Performance in Leadâ€Free 0.95(K,Na)(Sb,Nb)O ₃ â€0.05(Bi,Na,K)ZrO ₃ Thick Films with Oriented Nanophase Coexistence. Advanced Electronic Materials, 2019, 5, 1800691.	5.1	18
488	Phaseâ€Controlled Synthesis of Monolayer W 1â^' x Re x S 2 Alloy with Improved Photoresponse Performance. Small, 2020, 16, 2000852.	10.0	18
489	Phase-Tunable Synthesis and Etching-Free Transfer of Two-Dimensional Magnetic FeTe. ACS Nano, 2021, 15, 19089-19097.	14.6	18
490	Optical and analytical transmission-electron-microscopy studies of thermochemically reduced MgO crystals. Physical Review B, 1988, 38, 4231-4238.	3.2	17
491	Zâ€contrast investigation of the ordered atomic interface of CoSi2/Si(001) layers. Applied Physics Letters, 1994, 64, 3608-3610.	3.3	17
492	Atomic layer graphoepitaxy for single crystal heterostructures. Applied Physics Letters, 1997, 70, 3113-3115.	3.3	17
493	Mechanisms of strain induced roughening and dislocation multiplication in SixGe1-xthin films. Journal of Electronic Materials, 1997, 26, 1039-1047.	2.2	17
494	Direct imaging of quantum wires nucleated at diatomic steps. Applied Physics Letters, 2007, 91, 143112.	3.3	17
495	Experimental probe of adsorbate binding energies at internal crystalline/amorphous interfaces in Gd-doped Si3N4. Applied Physics Letters, 2008, 92, .	3.3	17
496	Characterization of surface metallic states in SrTiO3 by means of aberration corrected electron microscopy. Ultramicroscopy, 2013, 127, 109-113.	1.9	17
497	Effects of precursor pre-treatment on the vapor deposition of WS ₂ monolayers. Nanoscale Advances, 2019, 1, 953-960.	4.6	17
498	Enhanced Magnetic Anisotropy and Orbital Symmetry Breaking in Manganite Heterostructures. Advanced Functional Materials, 2020, 30, 1909536.	14.9	17
499	Ordered Structures at Si on Ge(001) Interfaces. Physical Review Letters, 1995, 75, 184-184.	7.8	16
500	New insights into the kinetics of the stress-driven two-dimensional to three-dimensional transition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2199.	1.6	16
501	Ordering of As impurities in a Si dislocation core. Applied Physics Letters, 1997, 70, 336-338.	3.3	16
502	Damage nucleation and vacancy-induced structural transformation in Si grain boundaries. Applied Physics Letters, 1999, 75, 2380-2382.	3.3	16
503	Compositional Analysis with Atomic Column Spatial Resolution by 5th-Order Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2011, 17, 578-581.	0.4	16
504	Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg ₂ Sn _{1â€"} <i>_x</i> Sb <i>_x</i> Solid Solutions. Small Methods, 2019, 3, 1900412.	8.6	16

#	Article	IF	CITATIONS
505	Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures. Nanoscale, 2019, 11, 4183-4189.	5.6	16
506	Phospho-oxynitride Layer Protected Cobalt Phosphonitride Nanowire Arrays for High-Rate and Stable Supercapacitors. ACS Applied Energy Materials, 2019, 2, 616-626.	5.1	16
507	Cavity Formation in Simox Structures. Materials Research Society Symposia Proceedings, 1987, 107, 79.	0.1	15
508	Atomic-resolution imaging and spectroscopy of semiconductor interfaces. Applied Physics A: Solids and Surfaces, 1993, 57, 385-391.	1.4	15
509	Self-Limiting Growth Kinetics of 3D Coherent Islands. Materials Research Society Symposia Proceedings, 1995, 399, 271.	0.1	15
510	A Scan Through the History of STEM. , 2011, , 1-90.		15
511	Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics. Materials Research Bulletin, 2013, 48, 352-356.	5.2	15
512	Nanoâ€Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angewandte Chemie, 2019, 131, 15220-15225.	2.0	15
513	Unveiling Atomic-Scale Moiré Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers. Nano Letters, 2021, 21, 3262-3270.	9.1	15
514	Direct Laser Patterning of a 2D WSe ₂ Logic Circuit. Advanced Functional Materials, 2021, 31, 2009549.	14.9	15
515	Controlled Sign Reversal of Electroresistance in Oxide Tunnel Junctions by Electrochemical-Ferroelectric Coupling. Physical Review Letters, 2020, 125, 266802.	7.8	15
516	Redistribution and activation of implanted S, Se, Te, Be, Mg, and C in GaN. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1226-1229.	2.1	14
517	Structural model for theAl72Ni20Co8decagonal quasicrystals. Physical Review B, 2000, 61, 14291-14294.	3.2	14
518	Direct correlation betweenTcandCuO2bilayer spacing inYBa2Cu3O7â^'x. Physical Review B, 2002, 66, .	3.2	14
519	Atomic structure of misfit dislocations in nonpolar ZnO/Al2O3 heterostructures. Applied Physics Letters, 2010, 97, 121914.	3.3	14
520	Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy. Scripta Materialia, 2011, 65, 656-659.	5.2	14
521	Spectroscopic imaging in electron microscopy. MRS Bulletin, 2012, 37, 13-18.	3.5	14
522	Fulfilling Feynman's dream: "Make the electron microscope 100 times betterâ€â€"Are we there yet?. MRS Bulletin, 2015, 40, 71-78.	3.5	14

#	Article	IF	CITATIONS
523	Electrochemically Induced Amorphization and Unique Lithium and Sodium Storage Pathways in FeSbO4 Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20082-20090.	8.0	14
524	Emergent Topological Hall Effect at a Charge†Transfer Interface. Small, 2020, 16, e2004683.	10.0	14
525	Optical and analytical transmission electron microscopy characterization of thermochemically reduced MgAl2O4spinel. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1989, 59, 907-916.	0.6	13
526	Impurity segregation and ordering in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>ıl3:12text>\$</td><td>Si©x/mml:mt</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ıl 3:12 text>\$	Si © x/mml:mt
527	Transmission Electron Microscopy: A Textbook for Materials Science, Second Edition. David B. Williams and C. Barry Carter. Springer, New York, 2009, 932 pages. ISBN 978-0-387-76500-6 (Hardcover), ISBN 978-0-387-76502-0 (Softcover). Microscopy and Microanalysis, 2010, 16, 111-111.	0.4	13
528	New views of materials through aberration-corrected scanning transmission electron microscopy. Microscopy (Oxford, England), 2011, 60, S213-S223.	1.5	13
529	Vortex beams for atomic resolution dichroism. Microscopy (Oxford, England), 2011, 60, 295-300.	1.5	13
530	Defect mediated photocatalytic decomposition of 4-chlorophenol on epitaxial rutile thin films under visible and UV illumination. Journal of Physics Condensed Matter, 2012, 24, 395005.	1.8	13
531	Orbital Occupancy and Charge Doping in Ironâ€Based Superconductors. Advanced Materials, 2014, 26, 6193-6198.	21.0	13
532	Oxygen Octahedral Distortions in LaMO ₃ /SrTiO ₃ Superlattices. Microscopy and Microanalysis, 2014, 20, 825-831.	0.4	13
533	A Novel Sb ₂ Te ₃ Polymorph Stable at the Nanoscale. Chemistry of Materials, 2015, 27, 4368-4373.	6.7	13
534	3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO ₃ films. Journal of Materials Research, 2017, 32, 957-967.	2.6	13
535	Ferromagnetism and matrix-dependent charge transfer in strained LaMnO ₃ –LaCoO ₃ superlattices. Materials Research Letters, 2018, 6, 501-507.	8.7	13
536	Enhanced magnetism in lightly doped manganite heterostructures: strain or stoichiometry?. Nanoscale, 2019, 11, 7364-7370.	5.6	13
537	Magnetic Anisotropy of a Quasi Two-Dimensional Canted Antiferromagnet. Nano Letters, 2020, 20, 1890-1895.	9.1	13
538	Atomic structure of a Ca-doped [001] tilt grain boundary in MgO. Journal of Electron Microscopy, 1998, 47, 115-120.	0.9	12
539	Quantitative Interpretation and Information Limits in Annular Dark-Field STEM Images. Microscopy and Microanalysis, 2000, 6, 104-105.	0.4	12
540	Tunnel magnetoresistance in La0.7Ca0.3MnO3â^•PrBa2Cu3O7â^•La0.7Ca0.3MnO3. Applied Physics Letters, 2006 88, 022512.	'3.3	12

#	Article	IF	CITATIONS
541	Imaging and spectroscopy of defects in semiconductors using aberration-corrected STEM. Applied Physics A: Materials Science and Processing, 2009, 96, 161-169.	2.3	12
542	Direct Electronic Property Imaging of a Nanocrystal-Based Photovoltaic Device by Electron Beam-Induced Current via Scanning Electron Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 856-860.	4.6	12
543	Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure. Microscopy and Microanalysis, 2014, 20, 784-797.	0.4	12
544	Temperature-Controlled Vapor Deposition of Highly Conductive p-Type Reduced Molybdenum Oxides by Hydrogen Reduction. Journal of Physical Chemistry Letters, 2018, 9, 7185-7191.	4.6	12
545	Cavity Plasmonics in Tunnel Junctions: Outcoupling and the Role of Surface Roughness. Physical Review Applied, 2020, 14, .	3.8	12
546	Strong Moir \tilde{A} © Excitons in High-Angle Twisted Transition Metal Dichalcogenide Homobilayers with Robust Commensuration. Nano Letters, 2022, 22, 203-210.	9.1	12
547	Room-temperature spin-orbit torque switching in a manganite-based heterostructure. Physical Review B, 2022, 105, .	3.2	12
548	Formation of partially coherent antimony precipitates in ion implanted thermally annealed silicon. Journal of Applied Physics, 1983, 54, 6875-6878.	2.5	11
549	The Role of Trapped Interstitials During Rapid Thermal Annealing. Materials Research Society Symposia Proceedings, 1985, 52, 37.	0.1	11
550	Formation of silicides by rapid thermal annealing over polycrystalline silicon. Journal of Applied Physics, 1986, 60, 631-634.	2.5	11
551	Rapid autotuning for crystalline specimens from an inline hologram. Microscopy (Oxford, England), 2008, 57, 195-201.	1.5	11
552	A Method to Determine the Strain and Nucleation Sites of Stacked Nano-Objects. Journal of Nanoscience and Nanotechnology, 2008, 8, 3422-3426.	0.9	11
553	Universal optical response of Si-Si bonds and its evolution from nanoparticles to bulk crystals. Physical Review B, 2009, 79, .	3.2	11
554	Crystal-induced effects at crystal/amorphous interfaces: The case of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Si</mml:mtext></mml:mrow><mml:mn>3 Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	:/ <mark>3:2</mark> 1:mn>	11 c/mml:msul
555	Evolution of the nuclear and magnetic structures of TlFe1.6Se2with temperature. Physical Review B, 2012, 85, .	3.2	11
556	Scanning transmission electron microscopy: Seeing the atoms more clearly. MRS Bulletin, 2012, 37, 943-951.	3. 5	11
557	A Pathway for the Growth of Core–Shell Pt–Pd Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 25114-25121.	3.1	11
558	Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3. Scientific Reports, 2016, 6, 37624.	3.3	11

#	Article	IF	CITATIONS
559	Electrocaloric effect in ferroelectric ceramics with point defects. Applied Physics Letters, 2019, 114, .	3.3	11
560	Introducing Normalized Centrifugation for a More Accurate Thermodynamic Analysis of Molybdenum Disulfide Dispersions: A Study on Mixed Solvents of Alcohols and Amines with Water. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3096-3103.	8.0	11
561	On-Chip Template-Directed Conversion of Metal Hydroxides to Metal–Organic Framework Films with Enhanced Adhesion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36715-36722.	8.0	11
562	Characteristic Lengths of Interlayer Charge Transfer in Correlated Oxide Heterostructures. Nano Letters, 2020, 20, 2493-2499.	9.1	11
563	Origin of giant electric-field-induced strain in faulted alkali niobate films. Nature Communications, 2022, 13, .	12.8	11
564	High-resolution imaging and electron energy-loss studies of platelet defects in diamond. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1367.	1.1	10
565	Precipitation, Phase Transformation, and Enhanced Diffusion in Ion-Implanted Silicon. Materials Research Society Symposia Proceedings, 1988, 100, 411.	0.1	10
566	Heteroepitaxial growth of Ge films on (100) GaAs by pyrolysis of digermane. Applied Physics Letters, 1989, 55, 858-860.	3.3	10
567	Heteroepitaxy of 76Ge films on GaAs by direct deposition from a lowâ€energy ion beam. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1372-1377.	2.1	10
568	3D Atomic Resolution Imaging through Aberration-Corrected STEM. Microscopy and Microanalysis, 2004, 10, 1172-1173.	0.4	10
569	The use of Magnetron Sputtering for the Production of Heterogeneous Catalysts. Studies in Surface Science and Catalysis, 2006, , 71-78.	1.5	10
570	Effect of spacer layer thickness on magnetic interactions in self-assembled single domain iron nanoparticles. Journal of Applied Physics, 2008, 103, 07D515.	2.5	10
571	Identification and lattice location of oxygen impurities in α-Si3N4. Applied Physics Letters, 2009, 95, 164101 Disorder-controlled superconductivity at YBa <mml:math< td=""><td>3.3</td><td>10</td></mml:math<>	3. 3	10
572	/> <mml:mn>2Cu<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math>O<mml:math< td=""><td>3.2</td><td>10</td></mml:math<></mml:mn>	3.2	10
573	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml: Watching Atoms Work: Nanocluster Structure and Dynamics. ACS Nano, 2015, 9, 9437-9440.</mml: </mml:mrow </mml:msub>	14.6	10
574	Localization of Yttrium Segregation within YSZ Grain Boundary Dislocation Cores. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800349.	1.8	10
575	Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling. ACS Nano, 2019, 13, 14529-14539.	14.6	10
576	Biosensors: ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metalâ€Organic Frameworks for ppb‣evel Gas Sensing (Adv. Mater. 11/2019). Advanced Materials, 2019, 31, 1970076.	21.0	10

#	Article	IF	CITATIONS
577	Electroresistance of Pt/BaTiO ₃ /LaNiO ₃ ferroelectric tunnel junctions and its dependence on BaTiO ₃ thickness. Materials Research Express, 2019, 6, 046307.	1.6	10
578	An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers. Nano Letters, 2020, 20, 5330-5338.	9.1	10
579	Light-Emitting V-Pits: An Alternative Approach toward Luminescent Indium-Rich InGaN Quantum Dots. ACS Photonics, 2021, 8, 2853-2860.	6.6	10
580	Learning motifs and their hierarchies in atomic resolution microscopy. Science Advances, 2022, 8, eabk1005.	10.3	10
581	Nanoscale Characterization of Materials. MRS Bulletin, 1997, 22, 17-21.	3.5	9
582	Atomic resolution Z-contrast imaging of semiconductors. Journal of Electron Microscopy, 2000, 49, 231-244.	0.9	9
583	Dipolar interactions and their influence on the critical single domain grain size of Ni in layered Ni/Al ₂ O ₃ composites. Journal of Physics Condensed Matter, 2008, 20, 385213.	1.8	9
584	Atomic resolution study of the interfacial bonding at Si3N4/CeO2â~δgrain boundaries. Applied Physics Letters, 2008, 93, 053104.	3.3	9
585	Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene. Journal of Physics Condensed Matter, 2012, 24, 314213.	1.8	9
586	Atomic Scale Studies of La/Sr Ordering in Colossal Magnetoresistant La _{2â^²2<i>x</i>} Sr _{1+2<i>x</i>} Mn ₂ O ₇ Single Crystals. Microscopy and Microanalysis, 2014, 20, 1791-1797.	0.4	9
587	Magnetic Ordering in Sr3YCo4O10+x. Scientific Reports, 2016, 6, 19762.	3.3	9
588	Electronic and plasmonic phenomena at nonstoichiometric grain boundaries in metallic SrNbO ₃ . Nanoscale, 2020, 12, 6844-6851.	5.6	9
589	In-situ derived highly active NiS2 and MoS2 nanosheets on NiMoO4 microcuboids via controlled surface sulfidation for high-current-density hydrogen evolution reaction. Electrochimica Acta, 2021, 389, 138733.	5.2	9
590	Characterization and Evolution of Microstructures Formed by High Dose Oxygen Implantation of silicont. Materials Research Society Symposia Proceedings, 1986, 74, 591.	0.1	8
591	Excimer laser induced oxidation of ionâ€implanted silicon. Applied Physics Letters, 1988, 53, 1720-1722.	3.3	8
592	"Column-By-Column―Compositional Mapping At Semiconductor Interfaces Using Z-Contrast Stem. Materials Research Society Symposia Proceedings, 1990, 183, 223.	0.1	8
593	Novel method for the synthesis of thin film coatings on particulate materials. Journal of Materials Research, 1999, 14, 3281-3291.	2.6	8
594	Cathodoluminescent properties at nanometer resolution through Z-contrast scanning transmission electron microscopy. Applied Physics Letters, 2000, 77, 594-596.	3.3	8

#	Article	IF	Citations
595	Comment on "Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly". Science, 2003, 300, 1236b-1236.	12.6	8
596	Simultaneous Z-Contrast and Phase Contrast Imaging of Oxygen in Ceramic Interfaces. Microscopy and Microanalysis, 2004, 10, 256-257.	0.4	8
597	The effect of matrix and substrate on the coercivity and blocking temperature of self-assembled Ni nanoparticles. Journal of Applied Physics, 2008, 104, .	2.5	8
598	Pulsed infrared laser annealing of gold nanoparticles embedded in a silica matrix. Journal of Applied Physics, 2008, 103, 083545.	2.5	8
599	Electron Doping by Charge Transfer at LaFeO ₃ /Sm ₂ CuO ₄ Epitaxial Interfaces. Advanced Materials, 2013, 25, 1468-1473.	21.0	8
600	Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene. Physical Review B, 2016, 94, .	3.2	8
601	Probing the meta-stability of oxide core/shell nanoparticle systems at atomic resolution. Chemical Engineering Journal, 2021, 405, 126820.	12.7	8
602	Z-contrast imaging of supported Pt and Pd clusters. Microscopy Research and Technique, 1994, 28, 427-429.	2.2	7
603	Enhanced absorption in ultrathin Si by NiSi ₂ nanoparticles. Nanomaterials and Energy, 2013, 2, 11-19.	0.2	7
604	Unlocking the origin of compositional fluctuations in InGaN light emitting diodes. Physical Review Materials, 2021, 5, .	2.4	7
605	Time-Resolved Studies of Rapid Solidification in Highly Undercooled Molten Silicon. Materials Research Society Symposia Proceedings, 1984, 35, 101.	0.1	6
606	Transient Enhanced Diffusion in B ⁺ and P ⁺ Implanted Silicon. Materials Research Society Symposia Proceedings, 1986, 74, 379.	0.1	6
607	High Resolution Z-Contrast Imaging of Semiconductor Interfaces. MRS Bulletin, 1991, 16, 34-40.	3.5	6
608	Atomic Structures of Oxygen-associated Defects in Sintered Aluminum Nitride Ceramics. Microscopy and Microanalysis, 1999, 5, 352-357.	0.4	6
609	Theoretical proposal: a tunable heterogeneous catalyst. Surface Science, 2000, 470, L88-L92.	1.9	6
610	Spectroscopic imaging of electron energy loss spectra using ab initio data and function field visualization. Ultramicroscopy, 2009, 109, 1472-1478.	1.9	6
611	Lorentz Microscopy and Electron Holography of Magnetic Materials. , 2012, , 221-251.		6
612	Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy. Applied Physics Letters, 2016, 109, .	3.3	6

#	Article	IF	Citations
613	Self-assembled atomically thin hybrid conjugated polymer perovskites with two-dimensional structure. Journal of Materials Chemistry C, 2018, 6, 8405-8410.	5.5	6
614	Correlated Lattice Instability and Emergent Charged Domain Walls at Oxide Heterointerfaces. Advanced Functional Materials, 2019, 29, 1906655.	14.9	6
615	Local and Global Bonding at the Si-SiO2 Interface. Springer Series in Materials Science, 2001, , 193-218.	0.6	6
616	Electron beam triggered single-atom dynamics in two-dimensional materials. Journal of Physics Condensed Matter, 2021, 33, 063001.	1.8	6
617	Direct Imaging of "Explosively―Propagating Buried Molten Layers In Amorphous Silicon Using Optical, Tem And Ion Backscattering Measurements. Materials Research Society Symposia Proceedings, 1985, 51, 131.	0.1	5
618	Evolving Surface Cusps During Strained Layer Epitaxy. Materials Research Society Symposia Proceedings, 1993, 312, 47.	0.1	5
619	Surface Stress, Morphological Development, and Dislocation Nucleation During Strained-Layer Epitaxy. Materials Research Society Symposia Proceedings, 1993, 317, 297.	0.1	5
620	Atomic and Electronic Structure Investigations of HfO2/SiO2/Si Gate Stacks Using Aberration-Corrected STEM. AIP Conference Proceedings, 2005, , .	0.4	5
621	Thickness-dependent pinning in a superconductor thin film. Journal of Applied Physics, 2007, 101, 023916.	2.5	5
622	Structural and flux-pinning properties of laser ablated YBa2Cu3O7â°î thin films: Effects of self-assembled CeO2 nanodots on LaAlO3 substrates. Physica C: Superconductivity and Its Applications, 2008, 468, 2313-2316.	1.2	5
623	Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces. International Journal of Materials Research, 2010, 101, 21-26.	0.3	5
624	Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy. Nanotechnology, 2010, 21, 325706.	2.6	5
625	Applications of Aberration-Corrected Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy to Complex Oxide Materials. , 2011, , 429-466.		5
626	Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope. Nanotechnology, 2016, 27, 155202.	2.6	5
627	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	2.4	5
628	Highly Polarized Fluorescent Film Based on Aligned Quantum Rods by Contact Ink-Jet Printing Method. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	5
629	Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS ₂ Crystals. Journal of Physical Chemistry Letters, 2019, 10, 1292-1299.	4.6	5
630	Single Atom Electrocatalysis: Heterogeneous Single Atom Electrocatalysis, Where "Singles―Are "Married―(Adv. Energy Mater. 9/2020). Advanced Energy Materials, 2020, 10, 2070037.	19.5	5

#	Article	lF	CITATIONS
631	Energy-Efficient Stacksâ€"Covellite (CuS) on Polyethylene Terephthalate Film: A Sustainable Solution to Heat Management. Journal of Physical Chemistry C, 2020, 124, 3314-3321.	3.1	5
632	Defect-nucleated phase transition in atomically-thin WS ₂ . 2D Materials, 2021, 8, 025017.	4.4	5
633	Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon. Materials Research Society Symposia Proceedings, 1988, 100, 489.	0.1	4
634	Metal Silicides Formed by Direct Ion Beam Deposition. Materials Research Society Symposia Proceedings, 1988, 128, 47.	0.1	4
635	Grain Boundary Structure as a Function of Aluminum Level in Ni3Al. Materials Research Society Symposia Proceedings, 1990, 213, 417.	0.1	4
636	Jessonet al. reply. Physical Review Letters, 1993, 71, 3737-3737.	7.8	4
637	The mechanism for the high-quality single-phase growth of MnSi films on Si (111) in the presence of Sb flux. Applied Physics Letters, 1999, 75, 2894-2896.	3.3	4
638	The Effects of Microstructure on the Brightness of Pulsed Laser Deposited Y ₂ O ₃ :Eu Thin Film Phosphors for Field Emission Displays. Materials Research Society Symposia Proceedings, 2000, 621, 2101.	0.1	4
639	Formation of MnSb during the growth of MnSi layers in the presence of an Sb flux. Journal of Applied Physics, 2002, 91, 4932-4935.	2.5	4
640	The Ultimate Resolution in Aberration-Corrected STEM. Microscopy and Microanalysis, 2002, 8, 16-17.	0.4	4
641	Transmission Electron Microscopy: Overview and Challenges. AIP Conference Proceedings, 2003, , .	0.4	4
642	Evidence of High-Pressure Rhodium Sesquioxide in the Rhodium \hat{I}^3 -Alumina Catalytic System. Journal of Physical Chemistry C, 2008, 112, 11831-11834.	3.1	4
643	Scaling exponent within the side-jump mechanism of Hall effect size-dependence in Ni nanocrystals. Applied Physics Letters, 2008, 93, 133105.	3.3	4
644	Tuning Fifth-Order Aberrations in a Quadrupole-Octupole Corrector. Microscopy and Microanalysis, 2012, 18, 699-704.	0.4	4
645	Atomic scale characterization of point and extended defects in niobate thin films. Ultramicroscopy, 2019, 203, 82-87.	1.9	4
646	Tungsten Suboxide Nanoneedles as an Effective Thermal Shield through Near-Infrared Reflection and Absorption. Journal of Physical Chemistry C, 2021, 125, 11115-11123.	3.1	4
647	Singleâ€Atom Catalysts: Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070195.	19.5	4
648	Z-Contrast Imaging in the Scanning Transmission Electron Microscope. Springer Series in Surface Sciences, 2001, , 81-111.	0.3	4

#	ARTICLE Understand antiferromagnetic coupling between <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
649	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>SrRu</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi< td=""><td>ni 2.4</td><td>4</td></mml:mi<></mml:msub></mml:mrow></mml:math>	ni 2.4	4
650	Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets. Microscopy and Microanalysis, 2022, 28, 622-632.	0.4	4
651	Diffusion, Segregation, and Recrystallization in High-Dose Ion-Implanted Si. Materials Research Society Symposia Proceedings, 1989, 147, 45.	0.1	3
652	Atomic Structure and Chemistry of Si/Ge Interfaces Determined by Z-Contrast Stem. Materials Research Society Symposia Proceedings, 1989, 159, 447.	0.1	3
653	Direct Imaging of Ordering in Si-Ge Alloys, Ultrathin Superlattices, and Buried Ge Layers. Materials Research Society Symposia Proceedings, 1991, 220, 141.	0.1	3
654	The Role of Hydrogen In The Structure of \hat{I}^3 -Alumina. Materials Research Society Symposia Proceedings, 1998, 549, 165.	0.1	3
655	The Si/SiO ₂ Interface: Atomic Structures, Composition, Strain And Energetics. Microscopy and Microanalysis, 1999, 5, 122-123.	0.4	3
656	Yan, Pennycook, and Pang Reply:. Physical Review Letters, 1999, 82, 4367-4367.	7.8	3
657	Towards Z-Contrast Imaging in an Aberration-Corrected STEM. Microscopy and Microanalysis, 2000, 6, 106-107.	0.4	3
658	Probing Nanostructures Site by Site with the Aberration-Corrected STEM. Microscopy and Microanalysis, 2003, 9, 2-3.	0.4	3
659	Single-Atom Sensitivity for Solving Catalysis Problems. Microscopy and Microanalysis, 2004, 10, 460-461.	0.4	3
660	Letter to the Editor: Limitations to the Measurement of Oxygen Concentrations by HRTEM Imposed by Surface Roughness. Microscopy and Microanalysis, 2005, 11, 111-113.	0.4	3
661	Nanoporous Carbon: Topological Defects: Origin of Nanopores and Enhanced Adsorption Performance in Nanoporous Carbon (Small 21/2012). Small, 2012, 8, 3282-3282.	10.0	3
662	Core Structures of Dislocations within CdTe Grains. Materials Research Society Symposia Proceedings, 2013, 1526, 1.	0.1	3
663	Monochromatic STEM-EELS for Correlating the Atomic Structure and Optical Properties of Two-Dimensional Materials. Microscopy and Microanalysis, 2014, 20, 96-97.	0.4	3
664	The quest for inorganic fullerenes. Journal of Applied Physics, 2015, 118, 134302.	2.5	3
665	Visualization of Current and Mapping of Elements in Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 895-902.	14.9	3
666	From Thin Films to Nanopillars: Tunable Morphology of Covellite via Radio Frequency Magnetron Sputtering for Cost-Effective Photothermal Vaporization. ACS Applied Nano Materials, 2019, 2, 7441-7448.	5.0	3

#	Article	IF	CITATIONS
667	Piezoelectric Films: Outstanding Piezoelectric Performance in Leadâ€Free 0.95(K,Na)(Sb,Nb)O ₃ â€0.05(Bi,Na,K)ZrO ₃ Thick Films with Oriented Nanophase Coexistence (Adv. Electron. Mater. 4/2019). Advanced Electronic Materials, 2019, 5, 1970020.	5.1	3
668	High Resolution Z-Contrast Observation of GaAs/Si Hetero-Interfaces through Scanning Transmission Electron Microscope. Japanese Journal of Applied Physics, 1992, 31, L1788-L1790.	1.5	2
669	Atomic Scale Structure and Chemistry of Interfaces by Z-Contrast Imaging and Electron Energy Loss Spectroscopy in the Stem. Materials Research Society Symposia Proceedings, 1994, 341, 139.	0.1	2
670	Direct Observation of Intercalant and Catalyst Particle in Single Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 1999, 593, 129.	0.1	2
671	Bonding, Defects, And Defect Dynamics In The Sic-SiO2 System. Materials Research Society Symposia Proceedings, 2000, 640, 1.	0.1	2
672	Exploring semiconductor quantum dots and wires by high resolution electron microscopy. Journal of Physics: Conference Series, 2010, 209, 012004.	0.4	2
673	Mapping Chemical Disorder and Ferroelectric Distortions in the Double Perovskite Compound Sr2-xGdxMnTiO6 by Atomic Resolution Electron Microscopy and Spectroscopy. Microscopy and Microanalysis, 2014, 20, 731-739.	0.4	2
674	Oxygen Vacancy Ordering: a Degree of Freedom that can Control the Structural, Electronic and Magnetic Properties of Transition-Metal Oxide Films. Microscopy and Microanalysis, 2014, 20, 556-557.	0.4	2
675	Patterning: Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). Small, 2015, 11, 5854-5854.	10.0	2
676	Imaging in the STEM. , 2016, , 283-342.		2
677	Molybdenum Disulfid: Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870360.	21.0	2
678	Atomic Origin of Interfaceâ€Dependent Oxygen Migration by Electrochemical Gating at the LaAlO 3 –SrTiO 3 Heterointerface. Advanced Science, 2020, 7, 2000729.	11.2	2
679	Fabrication and growth mechanism of ultra-crystalline C60 on silicon substrate in vacuum. Carbon Letters, 2021, 31, 315-322.	5.9	2
680	Correlated cation lattice symmetry and oxygen octahedral rotation in perovskite oxide heterostructures. Journal of Applied Physics, 2021, 129, 025303.	2.5	2
681	Bipolar Conduction and Giant Positive Magnetoresistance in Doped Metallic Titanium Oxide Heterostructures. Advanced Materials Interfaces, 2021, 8, 2002147.	3.7	2
682	Metalâ€Organic Frameworks: Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities (Adv. Mater. 29/2021). Advanced Materials, 2021, 33, 2170228.	21.0	2
683	Atomic Imaging of Crystals using Large-Angle Electron Scattering in STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 74-75.	0.0	2
684	Spin-Polarized Low-Energy Electron Microscopy. , 0, , 697-707.		2

#	Article	IF	CITATIONS
685	Incoherence in atomic-resolution Z-contrast imaging. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 978-979.	0.0	2
686	Electron Channeling Analysis and Z-COntrast Imaging of Dopants in Semiconductors. Proceedings Annual Meeting Electron Microscopy Society of America, 1985, 43, 296-299.	0.0	2
687	High-resolution z-contrast imaging of semiconductor interfaces. Proceedings Annual Meeting Electron Microscopy Society of America, 1989, 47, 468-469.	0.0	2
688	High Resolution Z-Contrast Imaging and Lattice Location Analysis of Dopants in Ion-Implanted Silicon. Materials Research Society Symposia Proceedings, 1984, 41, 287.	0.1	1
689	Formation Of Stable Point Defects in Ion-Implanted Si. Materials Research Society Symposia Proceedings, 1986, 74, 391.	0.1	1
690	Structural and Chemical Imaging of Superconductors and Semiconductors by High-Resolution Stem. Materials Research Society Symposia Proceedings, 1988, 138, 329.	0.1	1
691	Simulation and Quantification of High-Resolution Z-Contrast Imaging of Semiconductor Interfaces. Materials Research Society Symposia Proceedings, 1989, 159, 439.	0.1	1
692	Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-Contrast Stem. Materials Research Society Symposia Proceedings, 1989, 169, 765.	0.1	1
693	<title>Atomic scale imaging of the structure and chemistry of semiconductor interfaces by Z-contrast stem</title> ., 1990, 1284, 182.		1
694	Incoherent Imaging of Materials Structure and Composition by Z-Contrast Stem. Materials Research Society Symposia Proceedings, 1990, 183, 211.	0.1	1
695	Superconductivity in Nonsymmetric Epitaxial YBa2Cu3O7â^'δ - PrBa2Cu3O7â^'δ Superlattices Grown by Pulsed Laser Ablation. Materials Research Society Symposia Proceedings, 1990, 191, 153.	0.1	1
696	Atomic resolution chemical analysis. Advanced Materials, 1994, 6, 328-331.	21.0	1
697	Incoherent Imaging by Z-Contrast Stem: Towards $1\tilde{A}$ Resolution. Materials Research Society Symposia Proceedings, 1994, 332, 607.	0.1	1
698	Study of Chromium-Doped Diamond-Like Carbon by Z-Contrast Imaging and Electron Energy Loss Spectroscopy. Materials Research Society Symposia Proceedings, 1999, 593, 329.	0.1	1
699	Z-Contrast Stem Imaging and Eels of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces. Materials Research Society Symposia Proceedings, 1999, 571, 305.	0.1	1
700	Nanocrystal Thickness Information From Z-STEM: 3-D Imaging in One Shot. Materials Research Society Symposia Proceedings, 1999, 589, 229.	0.1	1
701	Microscopic and Theoretical Investigations of the Si-SiO2 Interface. Materials Research Society Symposia Proceedings, 1999, 592, 42.	0.1	1
702	Mechanisms of Single-Wall Carbon Nanotube Growth by the Laser Vaporization Technique: In Situ Imaging and Spectroscopy. Materials Research Society Symposia Proceedings, 1999, 593, 3.	0.1	1

#	Article	IF	Citations
703	<title>In-situ plasma diagnostic investigations of single-wall carbon nanotube synthesis by laser ablation of C-Ni-Co targets</title> ., 2000, , .		1
704	Nanoscale Structure/Property Correlation Through Aberration-Corrected Stem And Theory. Materials Research Society Symposia Proceedings, 2002, 738, 111.	0.1	1
705	Enhanced Current Transport at Grain Boundaries in High-Tc Superconductors ChemInform, 2005, 36, no.	0.0	1
706	The spatial resolution of core-loss imaging in the STEM. Journal of Physics: Conference Series, 2006, 26, 13-16.	0.4	1
707	Understanding Individual Defects in CdTe Solar Cells: From Atomic Structure to Electrical Activity. Microscopy and Microanalysis, 2014, 20, 518-519.	0.4	1
708	Atomic and Electronic Structure of \hat{I}^3 Fe2O3/Cu2O Heterostructured Nanocrystals. Microscopy and Microanalysis, 2014, 20, 410-411.	0.4	1
709	Column-by-Column Imaging of Dislocation Slip Processes in CdTe. Microscopy and Microanalysis, 2014, 20, 1054-1055.	0.4	1
710	APT mass spectrometry and SEM data for CdTe solar cells. Data in Brief, 2016, 7, 779-785.	1.0	1
711	Carbon Dioxide Reduction: Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2 O5 (Adv. Sci. 10/2016). Advanced Science, 2016, 3, .	11.2	1
712	Three-Dimensional Point Defect Imaging by Large-angle Illumination STEM. Microscopy and Microanalysis, 2017, 23, 424-425.	0.4	1
713	Decoding the Structural Origin of Piezoelectric and Thermoelectric Materials with Aberration-Corrected STEM. Microscopy and Microanalysis, 2018, 24, 72-73.	0.4	1
714	Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. Microscopy and Microanalysis, 2019, 25, 1998-1999.	0.4	1
715	Memory Devices: MoS ₂ /Polymer Heterostructures Enabling Stable Resistive Switching and Multistate Randomness (Adv. Mater. 42/2020). Advanced Materials, 2020, 32, 2070317.	21.0	1
716	Correlation of Transport Properties with Grain Boundary Atomic Structure in High Tc Superconducting Films and Tapes. , 1998, , 1015-1018.		1
717	Electron Microscopy at Very High Resolution. , 2008, , 1217-1229.		1
718	Z-contrast imaging of an ordered interface structure in the Si/CoSi ₂ /Si system. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 802-803.	0.0	1
719	Atomic resolution characterisation of interface structures by Electron Energy Loss Spectroscopy. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 576-577.	0.0	1

Topological Hall Effect: Emergent Topological Hall Effect at a Charge†Transfer Interface (Small) Tj ETQq0 0 0 rgBT 10.0 verlock 10 Tf 50 6

41

720

#	Article	IF	Citations
721	Large-Scale Epitaxial Growth of Ultralong Stripe BiFeO3 Films and Anisotropic Optical Properties. ACS Applied Materials & Lamp; Interfaces, 2022, , .	8.0	1
722	Point defect Supersaturation and Enhanced Diffusion in SPE Regrown Silicon Materials Research Society Symposia Proceedings, 1983, 27, 293.	0.1	0
723	Transient Enhanced Diffusion and Gettering of Dopants in Ion Implanted Silicon. Materials Research Society Symposia Proceedings, 1984, 36, 151.	0.1	0
724	Formation of Silicides by Rapid Thermal Annealing Over Polycrystalline Silicon. Materials Research Society Symposia Proceedings, 1985, 54, 753.	0.1	0
725	Microstructural Characterization of α-Al2O3 Implanted with Iron. Materials Research Society Symposia Proceedings, 1988, 138, 119.	0.1	0
726	Heteroepitaxy of GaAs on Si and Ge by low-Energy ion Beam Deposition Using Alternating Beams. Materials Research Society Symposia Proceedings, 1988, 144, 311.	0.1	0
727	Structural and Chemical Imaging of Superconductors and Semiconductors by High-Resolution Stem. Materials Research Society Symposia Proceedings, 1989, 139, 39.	0.1	0
728	Shallow Junction Formation in As-Implanted Si by Low-Temperature Rapid Thermal Annealing. Materials Research Society Symposia Proceedings, 1989, 147, 19.	0.1	0
729	Superconducting transport properties and surface microstructure for YBa2Cu3O7-Î-based superlattices grown by pulsed laser deposition. Lecture Notes in Physics, 1991, , 311-319.	0.7	0
730	Imaging in Materials Science. MRS Bulletin, 1991, 16, 19-21.	3.5	0
731	Step-Driven Surface Segregation and Ordering During Si-Ge MBE Growth. Materials Research Society Symposia Proceedings, 1992, 263, 9.	0.1	0
732	Application of Z-Contrast Imaging to Obtain Column-by-Column Spectroscopic Analysis of Materials. Materials Research Society Symposia Proceedings, 1992, 295, 279.	0.1	0
733	AB Initio Study of the Ge Adsorption and Diffusion on Si (100) Surface. Materials Research Society Symposia Proceedings, 1993, 317, 9.	0.1	0
734	Atomic-Resolution Chemical Analysis at 100 Kv in the Scanning Transmission Electron Microscope. Materials Research Society Symposia Proceedings, 1994, 332, 297.	0.1	0
735	Ab Initio Study of Expitaxial Growth on a $Si(100)$ Surface in the Presence of Steps. Materials Research Society Symposia Proceedings, 1995, 408, 439.	0.1	0
736	Cooperative Chemical Rebonding In The Segregation Of Impurities In Silicon Grain Boundaries. Materials Research Society Symposia Proceedings, 1996, 442, 213.	0.1	0
737	Determination of the Three-Dimensional Atomic Structure at Internal Interfaces by Electron Energy Loss Spectroscopy. Materials Research Society Symposia Proceedings, 1996, 466, 13.	0.1	0
738	Determination of Atomic Structure at Surfaces and Interfaces by High-Resolution Stem. Materials Research Society Symposia Proceedings, 1996, 466, 3.	0.1	0

#	Article	IF	CITATIONS
739	A Combined-Techniques Approach to Elucidating Crystalline Interface Atomic Structure. Materials Research Society Symposia Proceedings, 1996, 466, 45.	0.1	O
740	Atomic Resolution Electron Energy Loss Spectroscopy of Interfaces. Microscopy and Microanalysis, 1997, 3, 947-948.	0.4	0
741	Chemical Disorder And Columnar Vacancies In Ideal Decagonal AL-NI-CO Quasicrystals. Materials Research Society Symposia Proceedings, 1998, 553, 189.	0.1	0
742	In Situ Diagnostics of Nanomaterial Synthesis by Laser Ablation: Time-resolved Photoluminescence Spectra and Imaging of Gas-Suspended Nanoparticles Deposited for Thin Films. Materials Research Society Symposia Proceedings, 1998, 536, 359.	0.1	0
743	Complex Atomic-Scale Structures in Solids by a Combination of Theory and Microscopy. Microscopy and Microanalysis, 1998, 4, 760-761.	0.4	0
744	Atomic-Resolution Z-Contrast Imaging Of Decagonal Quasicrystals: A Nucleation And Growth Mechanism. Microscopy and Microanalysis, 1999, 5, 192-193.	0.4	0
745	The Origin Of Electrical Activity At Grain Boundaries In Perovskites. Microscopy and Microanalysis, 1999, 5, 110-111.	0.4	O
746	Z-Contrast Stem Imaging and Eels of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces. Materials Research Society Symposia Proceedings, 1999, 581, 503.	0.1	0
747	Atomic-Resolution Z-Contrast Imaging and its Application to Compositional Ordering and Segregation. Materials Research Society Symposia Proceedings, 1999, 583, 235.	0.1	0
748	Relationship Between Structure and Luminescent Properties of Epitaxial Grown Y2O3:Eu Thin Films on LaAlO3 Substrates. Materials Research Society Symposia Proceedings, 1999, 589, 203.	0.1	0
749	Theoretical Explanation of Pt Trimers Observed by Z-Contrast STEM. Materials Research Society Symposia Proceedings, 1999, 589, 241.	0.1	0
750	Atomic Scale Analysis of Cubic Zirconia Grain Boundaries. Materials Research Society Symposia Proceedings, 1999, 589, 323.	0.1	0
751	The Origin of Electrical Activity at Grain Boundaries in Perovskites and Related Materials. Materials Research Society Symposia Proceedings, 2000, 654, 131.	0.1	0
752	Determination of the Electronic Structures of Screw and Edge Dislocations in Gan Using Atomic Resolution EELS. Microscopy and Microanalysis, 2000, 6, 190-191.	0.4	0
753	The Role of Non-Stoichiometry in the Electrical Activity of Grain Boundaries in SrTiO3. Microscopy and Microanalysis, 2000, 6, 184-185.	0.4	0
754	Core Hole Effects on Eels Near-Edge Fine Structure in Semiconductors and Insulators. Microscopy and Microanalysis, 2001, 7, 1174-1175.	0.4	0
755	Non-Stoichiometry at Dislocation Cores in Perovskites and Related Materials. Microscopy and Microanalysis, 2001, 7, 306-307.	0.4	0
756	The Si/SiO2 Interface: Atomic Structures, Composition, Strain and Energetics. Microscopy and Microanalysis, 2001, 7, 768-769.	0.4	0

#	Article	IF	CITATIONS
757	Critical Currents at Grain Boundaries in High Temperature Superconductors. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	O
758	Time-resolved diagnostics and mechanisms of single-wall carbon nanotube synthesis by the laser vaporization technique. , 2001, , .		0
759	<title>Laser synthesis of single-wall carbon nanotubes with time-resolved in-situ diagnostics</title> . , 2002, , .		0
760	Z-contrast Imaging and EELS of Dislocation Cores at the Si/GaAs Interface. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	0
761	Chromium and Lanthanum on Transition Alumina Surfaces: The Role of Bulk Point-Defect Distributions on Catalytic Activity. Materials Research Society Symposia Proceedings, 2002, 751, 1.	0.1	0
762	<title>Laser synthesis of single-wall carbon nanotubes with time-resolved in situ diagnostics</title> ., 2002, 4762, 268.		0
763	Local Structural Variations in Al72Ni2OCo8 Decagonal Quasicrystals. Materials Research Society Symposia Proceedings, 2003, 805, 248.	0.1	0
764	Tomographic Imaging of Nanocrystals by Aberration-Corrected Scanning Transmission Electron Microscopy. Materials Research Society Symposia Proceedings, 2004, 839, 178.	0.1	0
765	Z-contrast STEM Imaging of Rare Earths Segregation at Crystal/Intergranular Film Interfaces in Si3N4 Ceramicl. Microscopy and Microanalysis, 2005, 11 , .	0.4	0
766	Imaging And Spectroscopy Of Nanostructures Through Aberration-Corrected Stem. Materials Research Society Symposia Proceedings, 2005, 877, 1.	0.1	0
767	\${hbox{YBa}}_{2}{hbox{Cu}}_{3}{hbox{O}}_{7{hbox{-}}}delta}\$ Formation by Processing of Laser-Ablated, Fluorine-Free Precursor Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 3624-3627.	1.7	O
768	Materials Physics Using a Combination of Density-Functional Theory and Atomic-Resolution Electron Microscopy. AIP Conference Proceedings, 2008, , .	0.4	0
769	Tracking Dopant Diffusion Pathways inside Bulk Materials. Microscopy and Microanalysis, 2014, 20, 50-51.	0.4	0
770	Study of Oxygen Distortions in Titanate - Manganite Interfaces by Aberration Corrected STEM-EELS. Microscopy and Microanalysis, 2014, 20, 54-55.	0.4	0
771	Inelastic STEM Imaging Based on Low-Loss Spectroscopy. Microscopy and Microanalysis, 2014, 20, 90-91.	0.4	0
772	Atomic Imaging and Spectroscopy of Two-Dimensional Materials. Microscopy and Microanalysis, 2014, 20, 92-93.	0.4	0
773	Quantification of Dopant Distribution and the Local Band Gap in Selenium-Doped Molybdenum Disulfide. Microscopy and Microanalysis, 2014, 20, 1754-1755.	0.4	0
774	Thin Films: Direct Imaging of Cl―and Cuâ€Induced Shortâ€Circuit Efficiency Changes in CdTe Solar Cells (Adv. Energy Mater. 15/2014). Advanced Energy Materials, 2014, 4, .	19.5	0

#	Article	IF	CITATIONS
775	Direct Observation of Plasmonic Enhancement of Emission in Ag-nanoparticle-decorated ZnO nanostructures. Microscopy and Microanalysis, 2015, 21, 2389-2390.	0.4	O
776	Probing Plasmons in Three Dimensions within Random Morphology Nanostructures. Microscopy and Microanalysis, 2015, 21, 1683-1684.	0.4	0
777	Quantitative Electron Microscopy and the Application by Single Electron Signals. Microscopy and Microanalysis, 2015, 21, 1449-1450.	0.4	0
778	Probing Complex Nanostructures by Combining Atomic-Scale Theory and Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 2199-2200.	0.4	0
779	Pushing the Limits of Cathodoluminescence Signal Detection: Analyzing 2D Materials. Microscopy and Microanalysis, 2015, 21, 2049-2050.	0.4	O
780	Atom Probe Tomography of Interfacial Segregation in CdTe-based Solar Cells. Microscopy and Microanalysis, 2016, 22, 646-647.	0.4	0
781	Single Atom Imaging and Spectroscopy of Impurities in 2D Materials. Microscopy and Microanalysis, 2016, 22, 862-863.	0.4	0
782	Atomic Resolution STEM-EELS Studies of Defects and Local Structural Distortions in Oxide Interfaces. Microscopy and Microanalysis, 2017, 23, 372-373.	0.4	0
783	High Resolution Studies of Oxide Multiferroic Interfaces in the Aberration-Corrected STEM. Microscopy and Microanalysis, 2017, 23, 1592-1593.	0.4	O
784	Atomic Resolution Characterization of Semiconductor Materials by Aberration-Corrected Transmission Electron Microscopy $\hat{a}^{-}\!$		0
785	Engineering and Modifying Two-Dimensional Materials via Electron Beams. Microscopy and Microanalysis, 2019, 25, 1474-1475.	0.4	0
786	Observation of an Emerging Charged Domain Wall at a Non-ferroelectric Heterointerface with Aberration-corrected STEM. Microscopy and Microanalysis, 2019, 25, 672-673.	0.4	0
787	Titelbild: Onâ€Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films (Angew. Chem. 40/2019). Angewandte Chemie, 2019, 131, 14137-14137.	2.0	0
788	2D Transition Metal Dichalcogenide: Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970042.	11.2	0
789	Hole-Induced Spontaneous Mutual Annihilation of Dislocation Pairs. Journal of Physical Chemistry Letters, 2019, 10, 7421-7425.	4.6	0
790	Aberration-corrected stem: towards the ultimate resolution for imaging and analysis. Acta Crystallographica Section A: Foundations and Advances, 2002, 58, c252-c252.	0.3	0
791	Direct imaging of phason-related disorders in decagonal Al–Ni–Co by scanning transmission electron microscopy. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s37-s37.	0.3	0
792	Sub-Ãngstrom and 3-dimensional STEM for semiconductor research. Springer Proceedings in Physics, 2005, , 459-462.	0.2	0

#	Article	IF	Citations
793	Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy for Biology. , 2007, , .		0
794	Aberration-Corrected Z-Contrast STEM. , 2008, , 1-21.		0
795	Atomic-resolution real-space imaging and aberration-corrected electron microscopy. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C12-C12.	0.3	0
796	Structural Origin of Enhanced Luminescence Efficiency of Antimony Irradiated InAs Quantum Dots. Advanced Science Letters, 2011, 4, 3776-3778.	0.2	0
797	Studies of segregation by Z-contrast STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1988, 46, 614-615.	0.0	0
798	High-resolution Z-contrast imaging in the STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 394-395.	0.0	0
799	Misfit accommodation in epitaxial Ge films on Si. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 340-341.	0.0	0
800	Compositional mapping using large-angle electron scattering. Proceedings Annual Meeting Electron Microscopy Society of America, 1991, 49, 10-11.	0.0	0
801	Structural and compositional mapping at Si-Ge interfaces using Z-contrast STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1991, 49, 800-801.	0.0	0
802	Column-by-column compositional imaging by z-contrast STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1992, 50, 1470-1471.	0.0	0
803	Determination of interface structure and bonding at atomic resolution in the STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 734-735.	0.0	0
804	Microscopy of stress-induced morphological development and dislocation nucleation during semiconductor epitaxy. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 524-525.	0.0	0
805	Direct retrieval of crystal structures by maximum-entropy analysis of incoherent Z-contrast images. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 916-917.	0.0	0
806	Atomic-resolution characterization of an SrTiO3 grain boundary in the STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 972-973.	0.0	0
807	Correlating imaging and spectroscopy at atomic resolution in the STEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 78-79.	0.0	0
808	Atomic resolution determination of the structure and chemistry of ceramic grain boundaries. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 320-321.	0.0	0
809	Microanalysis at Atomic Resolution. , 1996, , 195-207.		0
810	Atomic-resolution eels for composition and 3-D coordination determination at interfaces and defects. Proceedings Annual Meeting Electron Microscopy Society of America, 1996, 54, 530-531.	0.0	0

#	Article	IF	CITATIONS
811	Determining Atomic Structure-Property Relationships at Grain Boundaries. Proceedings Annual Meeting Electron Microscopy Society of America, 1996, 54, 334-335.	0.0	О
812	Flexible Ferroelectrics: Periodic Wrinkleâ€Patterned Singleâ€Crystalline Ferroelectric Oxide Membranes with Enhanced Piezoelectricity (Adv. Mater. 50/2020). Advanced Materials, 2020, 32, 2070377.	21.0	0
813	TEM characterization of InAs/GaAs quantum dots capped by a GaSb/GaAs layer., 2008,, 45-46.		O
814	High-resolution z-contrast imaging of YBa2Cu3O7-δ grain boundaries. Proceedings Annual Meeting Electron Microscopy Society of America, 1989, 47, 198-199.	0.0	0
815	Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science. International Journal of Materials Research, 2022, 94, 350-357.	0.3	0