Davide Taibi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3932787/publications.pdf

Version: 2024-02-01

		430874	414414
83	1,944	18	32
papers	citations	h-index	g-index
85	85	85	843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Processes, Motivations, and Issues for Migrating to Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, 2017, 4, 22-32.	3.9	181
2	On the Definition of Microservice Bad Smells. IEEE Software, 2018, 35, 56-62.	1.8	128
3	Serverless Edge Computing: Vision and Challenges. , 2021, , .		92
4	Architectural Patterns for Microservices: A Systematic Mapping Study. , 2018, , .		89
5	MVP Explained: A Systematic Mapping Study on the Definitions of Minimal Viable Product. , 2016, , .		78
6	How developers perceive smells in source code: A replicated study. Information and Software Technology, 2017, 92, 223-235.	4.4	68
7	A systematic literature review on Technical Debt prioritization: Strategies, processes, factors, and tools. Journal of Systems and Software, 2021, 171, 110827.	4.5	64
8	An Overview and Comparison of Technical Debt Measurement Tools. IEEE Software, 2021, 38, 61-71.	1.8	57
9	A Survey on Open Source Software Trustworthiness. IEEE Software, 2011, 28, 67-75.	1.8	52
10	OpenBQR: a framework for the assessment of OSS. International Federation for Information Processing, 2007, , $173-186$.	0.4	48
11	From monolithic systems to Microservices: An assessment framework. Information and Software Technology, 2021, 137, 106600.	4.4	46
12	The Technical Debt Dataset. , 2019, , .		45
13	Architectural Smells Detected by Tools: a Catalogue Proposal. , 2019, , .		43
14	From Monolithic Systems to Microservices: A Decomposition Framework based on Process Mining. , 2019, , .		43
15	Towards microservice smells detection. , 2020, , .		35
16	Are SonarQube Rules Inducing Bugs?. , 2020, , .		33
17	Microservices Anti-patterns: A Taxonomy. , 2020, , 111-128.		32
18	Does migrating a monolithic system to microservices decrease the technical debt?. Journal of Systems and Software, 2020, 169, 110710.	4.5	31

#	Article	IF	CITATIONS
19	Analyzing Forty Years of Software Maintenance Models. , 2017, , .		30
20	Implementing a Microservices System with Blockchain Smart Contracts., 2019,,.		29
21	Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review., 2020,,.		29
22	Microservices in agile software development., 2017,,.		27
23	Are architectural smells independent from code smells? An empirical study. Journal of Systems and Software, 2019, 154, 139-156.	4.5	27
24	A Survey on Code Analysis Tools for Software Maintenance Prediction. Advances in Intelligent Systems and Computing, 2020, , 165-175.	0.6	25
25	Some SonarQube issues have a significant but small effect on faults and changes. A large-scale empirical study. Journal of Systems and Software, 2020, 170, 110750.	4.5	25
26	Continuous Architecting with Microservices and DevOps: A Systematic Mapping Study. Communications in Computer and Information Science, 2019, , 126-151.	0.5	24
27	Open Source Software Evaluation, Selection, and Adoption: a Systematic Literature Review., 2020,,.		24
28	Quality of Open Source Software: The QualiPSo Trustworthiness Model. IFIP Advances in Information and Communication Technology, 2009, , 199-212.	0.7	23
29	An empirical investigation of perceived reliability of open source Java programs. , 2012, , .		22
30	Towards surgically-precise technical debt estimation: early results and research roadmap., 2019,,.		22
31	Does code quality affect pull request acceptance? An empirical study. Journal of Systems and Software, 2021, 171, 110806.	4.5	22
32	Serverless: What it Is, What to Do and What Not to Do. , 2020, , .		21
33	Serverless Computing-Where Are We Now, and Where Are We Heading?. IEEE Software, 2021, 38, 25-31.	1.8	21
34	The QualiSPo approach to OSS product quality evaluation. , 2010, , .		20
35	On the Diffuseness of Code Technical Debt in Java Projects of the Apache Ecosystem. , 2019, , .		19
36	Applying SCRUM in an OSS Development Process: An Empirical Evaluation. Lecture Notes in Business Information Processing, 2010, , 147-159.	1.0	19

#	Article	IF	Citations
37	Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes. Lecture Notes in Business Information Processing, 2017, , 68-83.	1.0	18
38	Motivations, benefits, and issues for adopting Micro-Frontends: A Multivocal Literature Review. Information and Software Technology, 2021, 136, 106571.	4.4	18
39	Software Quality for Al: Where We Are Now?. Lecture Notes in Business Information Processing, 2021, , 43-53.	1.0	17
40	An Investigation of the Users' Perception of OSS Quality. International Federation for Information Processing, 2010, , 15-28.	0.4	17
41	Predicting OSS trustworthiness on the basis of elementary code assessment. , 2010, , .		16
42	On the definition of dynamic software measures. , 2012, , .		15
43	Comparing Communication Effort within the Scrum, Scrum with Kanban, XP, and Banana Development Processes., 2017,,.		15
44	Exploring information from OSS repositories and platforms to support OSS selection decisions. Information and Software Technology, 2018, 104, 104-108.	4.4	14
45	A Study on OSS Marketing and Communication Strategies. International Federation for Information Processing, 2012, , 338-343.	0.4	11
46	OpenSZZ. , 2020, , .		11
47	A probability-based approach to modeling the risk of unauthorized propagation of information in on-line social networks. , $2011,\ldots$		10
48	Interoperability-Related Architectural Problems and Solutions in Information Systems: A Scoping Study. Lecture Notes in Computer Science, 2014, , 308-323.	1.3	10
49	Exploring factors and metrics to select open source software components for integration: An empirical study. Journal of Systems and Software, 2022, 188, 111255.	4.5	10
50	Platforms for Serverless at the Edge: A Review. Communications in Computer and Information Science, 2021, , 29-40.	0.5	8
51	Structural Coupling for Microservices. , 2021, , .		8
52	Lessons Learned on Communication Channels and Practices in Agile Software Development. , 0, , .		8
53	How long do Junior Developers take to Remove Technical Debt Items?. , 2020, , .		8
54	Towards certifying the testing process of Open-Source Software: New challenges or old methodologies?. , 2009, , .		7

#	Article	IF	CITATIONS
55	An Empirical Study on Technical Debt in a Finnish SME. , 2019, , .		7
56	Towards The Evaluation of OSS Trustworthiness: Lessons Learned From The Observation of Relevant OSS Projects. International Federation for Information Processing, 2008, , 389-395.	0.4	7
57	OSS-TMM. International Journal of Open Source Software and Processes, 2011, 3, 1-22.	0.6	7
58	Controlled experiments comparing fault-tree-based safety analysis techniques. , 2014, , .		6
59	OP2A: How to Improve the Quality of the Web Portal of Open Source Software Products. Lecture Notes in Business Information Processing, 2012, , 149-162.	1.0	6
60	A Decomposition and Metric-Based Evaluation Framework for Microservices. Communications in Computer and Information Science, 2020, , 133-149.	0.5	6
61	Application of AC/DC/AC converter for sensorless nonlinear control of permanent magnet synchronous motor , 2010, , .		5
62	Estimating Software Development Effort Based on Phases. , 2014, , .		5
63	RARE: a labeled dataset for cloud-native memory anomalies. , 2020, , .		5
64	Testing Approaches And Tools For AWS Lambda Serverless-Based Applications. , 2022, , .		5
65	Process Configuration Framework Tool. , 2014, , .		4
66	A Survey on the Importance of Some Economic Factors in the Adoption of Open Source Software. Studies in Computational Intelligence, 2010, , 151-162.	0.9	4
67	Right Scaling for Right Pricing: A Case Study on Total Cost of Ownership Measurement for Cloud Migration. Communications in Computer and Information Science, 2019, , 190-214.	0.5	4
68	A Coordination-Based Brokerage Architecture for Multi-cloud Resource Markets., 2016,,.		3
69	Towards Cloud Native Continuous Delivery: An Industrial Experience Report. , 2018, , .		3
70	On the Relationship Between Coupling and Refactoring: An Empirical Viewpoint. , 2019, , .		3
71	Metrics selection for load monitoring of service-oriented system. , 2021, , .		3
72	Can Opinion Mining Techniques Help to Select Open Source Software?. International Journal of Computer $\&$ Software Engineering, 2016, 1, .	0.4	3

#	Article	IF	CITATIONS
73	Towards a Lean Approach to Reduce Code Smells Injection: An Empirical Study. Lecture Notes in Business Information Processing, 2016, , 300-304.	1.0	3
74	Cohort Studies in Software Engineering. , 2020, , .		3
75	Asterism: Decentralized File Sharing Application for Mobile Devices. , 2019, , .		2
76	Making the Cloud Work for Software Producers: Linking Architecture, Operating Cost and Revenue. , 2018, , .		2
77	An Investigation on the Availability of Contribution Information in Open-Source Projects. , 2021, , .		1
78	On the Technical Debt Prioritization and Cost Estimation with SonarQube Tool. Lecture Notes on Multidisciplinary Industrial Engineering, 2022, , 302-309.	0.6	1
79	Towards Component-Aware Function Point Measurement. , 2016, , .		0
80	Does Visualization Speed Up the Safety Analysis Process?. Lecture Notes in Computer Science, 2014, , 431-443.	1.3	0
81	Prioritizing Corrective Maintenance Activities for Android Applications: An Industrial Case Study on Android Crash Reports. Lecture Notes in Business Information Processing, 2018, , 133-143.	1.0	0
82	On the Link Between Refactoring Activity and Class Cohesion Through the Prism of Two Cohesion-Based Metrics. , 2020, , .		0
83	OSS-TMM., 0,, 59-78.		О