Santosh K Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3932768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications. Journal of Materials Chemistry A, 2022, 10, 10014-10025.	10.3	11
2	Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Science and Technology of Advanced Materials, 2022, 23, 413-423.	6.1	28
3	Air–Cathode Interface-Engineered Electrocatalyst for Solid-State Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2022, 5, 8756-8768.	5.1	3
4	Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 5121-5124.	13.8	61
5	Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts. Angewandte Chemie, 2021, 133, 5181-5184.	2.0	9
6	CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 820-827.	4.9	10
7	Zinc–Air Batteries Catalyzed Using Co ₃ O ₄ Nanorod-Supported N-Doped Entangled Graphene for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 4570-4580.	5.1	14
8	A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst. Nanoscale Advances, 2020, 2, 1709-1717.	4.6	21
9	Carbon Derived from Soft Pyrolysis of a Covalent Organic Framework as a Support for Small-Sized RuO ₂ Showing Exceptionally Low Overpotential for Oxygen Evolution Reaction. ACS Omega, 2019, 4, 13465-13473.	3.5	33
10	Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Analytical and Bioanalytical Chemistry, 2019, 411, 1509-1516.	3.7	39
11	Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogenâ€Đoped Carbon Materials. Advanced Materials, 2019, 31, e1804297.	21.0	459
12	Positive Effect of Induced Hydrophobicity in 3D N-Doped Porous Graphene Towards ORR Activity Under Acidic Condition. ECS Meeting Abstracts, 2019, , .	0.0	0
13	Substituentâ€Induced Deformed Ni–Porphyrin as an Electrocatalyst for the Electrochemical Conversion of Water into Dioxygen. European Journal of Inorganic Chemistry, 2018, 2018, 1549-1555.	2.0	5
14	Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sensors and Actuators B: Chemical, 2018, 262, 180-187.	7.8	108
15	Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: Application to the analysis of calcitonin containing pharmaceutical formulation. Electrochimica Acta, 2018, 266, 364-372.	5.2	5
16	Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV). Sensors and Actuators B: Chemical, 2018, 262, 991-1000.	7.8	82
17	Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light: Science and Applications, 2018, 7, 47.	16.6	50
18	On demand electrochemical release of drugs from porous reduced graphene oxide modified flexible electrodes. Journal of Materials Chemistry B, 2017, 5, 6557-6565.	5.8	13

Santosh K Singh

#	Article	IF	CITATIONS
19	Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochimica Acta, 2017, 224, 346-354.	5.2	53
20	Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 1: Lysozyme aggregation at pH 2 and 7.4. Electrochimica Acta, 2017, 254, 375-383.	5.2	15
21	Efficient and Durable Oxygen Reduction Electrocatalyst Based on CoMn Alloy Oxide Nanoparticles Supported Over N-Doped Porous Graphene. ACS Catalysis, 2017, 7, 6700-6710.	11.2	104
22	Activity Tuning of Cobalt Ferrite Nanoparticles Anchored on Nâ€Doped Reduced Graphene Oxide as a Potential Oxygen Reduction Electrocatalyst by Zn Substitution in the Spinel Matrix. ChemistrySelect, 2017, 2, 7845-7853.	1.5	7
23	Selective isolation and eradication of E. coli associated with urinary tract infections using anti-fimbrial modified magnetic reduced graphene oxide nanoheaters. Journal of Materials Chemistry B, 2017, 5, 8133-8142.	5.8	23
24	Magnetic reduced graphene oxide loaded hydrogels: Highly versatile and efficient adsorbents for dyes and selective Cr(VI) ions removal. Journal of Colloid and Interface Science, 2017, 507, 360-369.	9.4	72
25	N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Applied Materials Today, 2017, 8, 141-149.	4.3	69
26	10000-Fold Enhancement in Proton Conduction by Doping of Cesium Ions in a Proton-Conducting Zwitterionic Metal-Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 4382-4386.	2.0	20
27	Strategic Preparation of Efficient and Durable NiCo Alloy Supported Nâ€Doped Porous Graphene as an Oxygen Evolution Electrocatalyst: A Theoretical and Experimental Investigation. Advanced Materials Interfaces, 2016, 3, 1600532.	3.7	50
28	Cobalt Ferrite Bearing Nitrogen-Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2016, 8, 20730-20740.	8.0	41
29	Reduced Graphene Oxide Modified Electrodes for Sensitive Sensing of Gliadin in Food Samples. ACS Sensors, 2016, 1, 1462-1470.	7.8	57
30	Coordination polymers of Fe(<scp>iii</scp>) and Al(<scp>iii</scp>) ions with TCA ligand: distinctive fluorescence, CO ₂ uptake, redox-activity and oxygen evolution reaction. Dalton Transactions, 2016, 45, 6901-6908.	3.3	17
31	Pb ²⁺ —N Bonding Chemistry: Recycling of Polyaniline–Pb Nanocrystals Waste for Generating High-Performance Supercapacitor Electrodes. Journal of Physical Chemistry C, 2016, 120, 911-918.	3.1	16
32	Switching Closed-Shell to Open-Shell Phenalenyl: Toward Designing Electroactive Materials. Journal of the American Chemical Society, 2015, 137, 5955-5960.	13.7	47
33	Nanocrystalline Fe–Fe ₂ O ₃ particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction. Nanoscale, 2015, 7, 20117-20125.	5.6	58
34	Surface-Tuned Co ₃ O ₄ Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc–Air Battery Application. ACS Applied Materials & Interfaces, 2015, 7, 21138-21149.	8.0	145
35	Low Surface Energy Plane Exposed Co ₃ O ₄ Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 442-451.	8.0	108