J Gage Crump

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3932100/publications.pdf

Version: 2024-02-01

172207 182168 3,038 61 29 51 citations h-index g-index papers 79 79 79 3816 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons. Neuron, 1998, 20, 55-67.	3.8	295
2	Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nature Genetics, 2017, 49, 1346-1353.	9.4	252
3	The SAD-1 Kinase Regulates Presynaptic Vesicle Clustering and Axon Termination. Neuron, 2001, 29, 115-129.	3.8	166
4	Polarized Dendritic Transport and the AP-1 $\hat{l}/41$ Clathrin Adaptor UNC-101 Localize Odorant Receptors to Olfactory Cilia. Neuron, 2001, 31, 277-287.	3.8	148
5	Zebrafish Craniofacial Development. Current Topics in Developmental Biology, 2015, 115, 235-269.	1.0	137
6	New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Developmental Biology, 2012, 371, 121-135.	0.9	117
7	Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development (Cambridge), 2011, 138, 5135-5146.	1.2	94
8	Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development (Cambridge), 2010, 137, 1843-1852.	1.2	87
9	Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO Journal, 2014, 33, 2363-2373.	3.5	87
10	Bmps and Id2a Act Upstream of Twist1 To Restrict Ectomesenchyme Potential of the Cranial Neural Crest. PLoS Genetics, 2012, 8, e1002710.	1.5	80
11	Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development (Cambridge), 2011, 138, 5147-5156.	1.2	79
12	The LIM Protein Ajuba Restricts the Second Heart Field Progenitor Pool by Regulating Isl1 Activity. Developmental Cell, 2012, 23, 58-70.	3.1	79
13	Wnt-Dependent Epithelial Transitions Drive Pharyngeal Pouch Formation. Developmental Cell, 2013, 24, 296-309.	3.1	71
14	Ancient origin of lubricated joints in bony vertebrates. ELife, 2016, 5, .	2.8	69
15	Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. Development (Cambridge), 2016, 143, 2066-76.	1.2	67
16	Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genetics, 2016, 12, e1005967.	1.5	56
17	Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. ELife, 2018, 7, .	2.8	54
18	An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest. PLoS Genetics, 2012, 8, e1002938.	1.5	52

#	Article	IF	Citations
19	Fox proteins are modular competency factors for facial cartilage and tooth specification. Development (Cambridge), 2018, 145, .	1.2	49
20	Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate Upper Jaw. Developmental Cell, 2018, 44, 337-347.e5.	3.1	48
21	Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2020, 79, 1625-1634.	0.5	48
22	Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development (Cambridge), 2020, 147, .	1.2	48
23	The developing mouse coronal suture at single-cell resolution. Nature Communications, 2021, 12, 4797.	5.8	48
24	Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones. ELife, 2019, 8, .	2.8	47
25	Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development (Cambridge), 2014, 141, 3583-3593.	1.2	46
26	Histone H3.3 beyond cancer: Germline mutations in <i>Histone 3 Family 3A and 3B</i> cause a previously unidentified neurodegenerative disorder in 46 patients. Science Advances, 2020, 6, .	4.7	43
27	Sox9+ messenger cells orchestrate large-scale skeletal regeneration in the mammalian rib. ELife, 2019, 8, .	2.8	43
28	Analysis of Sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. Developmental Biology, 2012, 362, 230-241.	0.9	42
29	Peri-arterial specification of vascular mural cells from na \tilde{A} ve mesenchyme requires Notch signaling. Development (Cambridge), 2019, 146, .	1.2	42
30	Iroquois Proteins Promote Skeletal Joint Formation by Maintaining Chondrocytes in an Immature State. Developmental Cell, 2015, 35, 358-365.	3.1	41
31	Genome-wide analysis of facial skeletal regionalization in zebrafish. Development (Cambridge), 2017, 144, 2994-3005.	1.2	40
32	Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science, 2020, 370, 463-467.	6.0	34
33	Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. ELife, 2019, 8, .	2.8	33
34	Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nature Communications, 2022, 13, 13.	5.8	31
35	Endoderm Jagged induces liver and pancreas duct lineage in zebrafish. Nature Communications, 2017, 8, 769.	5.8	26
36	Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Scientific Reports, 2017, 7, 2497.	1.6	25

#	Article	IF	CITATIONS
37	Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Developmental Biology, 2018, 434, 7-14.	0.9	24
38	De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Human Genetics, 2018, 137, 459-470.	1.8	24
39	Foxc1 establishes enhancer accessibility for craniofacial cartilage differentiation. ELife, 2021, 10, .	2.8	24
40	Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. Development (Cambridge), 2015, 142, 1089-94.	1.2	23
41	Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genetics, 2019, 15, e1007962.	1.5	21
42	Building and maintaining joints by exquisite local control of cell fate. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e245.	5.9	19
43	Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24876-24884.	3.3	19
44	Development and maintenance of tendons and ligaments. Development (Cambridge), 2021, 148, .	1.2	19
45	Dynamic epithelia of the developing vertebrate face. Current Opinion in Genetics and Development, 2015, 32, 66-72.	1.5	17
46	Zebrafish prrx1a mutants have normal hearts. Nature, 2020, 585, E14-E16.	13.7	15
46	Zebrafish prrx1a mutants have normal hearts. Nature, 2020, 585, E14-E16. Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4.	13.7	15
47	Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BoneKEy Reports,	1.2	10
47	Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BoneKEy Reports, 2016, 5, 853. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of	2.7	10
47 48 49	Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BoneKEy Reports, 2016, 5, 853. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. Journal of Experimental Biology, 2020, 223, . Notch signaling enhances bone regeneration in the zebrafish mandible. Development (Cambridge),	1.2 2.7 0.8	10 10 10
47 48 49 50	Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BoneKEy Reports, 2016, 5, 853. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. Journal of Experimental Biology, 2020, 223, . Notch signaling enhances bone regeneration in the zebrafish mandible. Development (Cambridge), 2022, 149, . Regeneration of Jaw Joint Cartilage in Adult Zebrafish. Frontiers in Cell and Developmental Biology,	1.2 2.7 0.8	10 10 10
47 48 49 50	Regenerative potential of the zebrafish corneal endothelium. Experimental Eye Research, 2013, 106, 1-4. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BoneKEy Reports, 2016, 5, 853. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. Journal of Experimental Biology, 2020, 223, . Notch signaling enhances bone regeneration in the zebrafish mandible. Development (Cambridge), 2022, 149, . Regeneration of Jaw Joint Cartilage in Adult Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 777787.	1.2 2.7 0.8 1.2	10 10 10 10

#	Article	IF	CITATIONS
55	Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. Npj Regenerative Medicine, 2021, 6, 77.	2.5	7
56	Reassessing the embryonic origin and potential of craniofacial ectomesenchyme. Seminars in Cell and Developmental Biology, 2022, , .	2.3	7
57	The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning. Genes, 2021, 12, 170.	1.0	6
58	A comprehensive series of Irx cluster mutants reveals diverse roles in facial cartilage development. Development (Cambridge), 2021, 148, .	1.2	5
59	Gill developmental program in the teleost mandibular arch. ELife, 0, 11, .	2.8	3
60	Cranial Neural Crest: An Extraordinarily Migratory and Multipotent Embryonic Cell Population , 2015, , 185-214.		0
61	Reconstructing Connective Tissue Lineage Diversification at the Single Cell Level in the Zebrafish Face. FASEB Journal, 2019, 33, 73.2.	0.2	0