Daniel J Gage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3931480/publications.pdf

Version: 2024-02-01

430874 330143 2,131 40 18 37 h-index citations g-index papers 47 47 47 2217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dominance of Ciliophora and Chlorophyta Among Phyllosphere Protists of Solanaceous Plants. Phytobiomes Journal, 2023, 7, 270-280.	2.7	4
2	Simultaneous Single-Cell Genome and Transcriptome Sequencing of Termite Hindgut Protists Reveals Metabolic and Evolutionary Traits of Their Endosymbionts. MSphere, 2022, 7, e0002122.	2.9	1
3	The risk of water, sanitation and hygiene on diarrhea-related infant mortality in eastern Ethiopia: a population-based nested case-control. BMC Public Health, 2022, 22, 343.	2.9	11
4	<scp>18S rRNA</scp> gene amplicon sequencing combined with cultureâ€based surveys of maize rhizosphere protists reveal dominant, plantâ€enriched and culturable community members. Environmental Microbiology Reports, 2022, 14, 110-118.	2.4	8
5	Development and application of aerobic, chemically defined media for Dysgonomonas. Anaerobe, 2021, 67, 102302.	2.1	21
6	Optogenetics in <i>Sinorhizobium meliloti</i> Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure. ACS Synthetic Biology, 2021, 10, 345-356.	3.8	17
7	Draft Genome Sequences of <i>Dysgonomonas</i> sp. Strains GY75 and GY617, Isolated from the Hindgut of Reticulitermes flavipes. Microbiology Resource Announcements, 2021, 10, .	0.6	0
8	Draft Genome Sequences of <i>Dysgonomonas</i> sp. Strains BGC7 and HGC4, Isolated from the Hindgut of a Lower Termite. Microbiology Resource Announcements, 2021, 10, .	0.6	4
9	Single-cell amplicon sequencing reveals community structures and transmission trends of protist-associatedÂbacteria in aÂtermite host. PLoS ONE, 2020, 15, e0233065.	2.5	8
10	Validation of a PNA Clamping Method for Reducing Host DNA Amplification and Increasing Eukaryotic Diversity in Rhizosphere Microbiome Studies. Phytobiomes Journal, 2020, 4, 291-302.	2.7	14
11	Bacterial Extracellular Polymeric Substances Amplify Water Content Variability at the Pore Scale. Frontiers in Environmental Science, 2018, 6, .	3.3	30
12	Poreâ€scale water dynamics during drying and the impacts of structure and surface wettability. Water Resources Research, 2017, 53, 5585-5600.	4.2	31
13	Protist-Facilitated Particle Transport Using Emulated Soil Micromodels. Environmental Science & Emp; Technology, 2015, 49, 1384-1391.	10.0	24
14	Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry, 2015, 83, 116-124.	8.8	102
15	Biochemical Characterization of a Nitrogen-Type Phosphotransferase System Reveals that Enzyme El ^{Ntr} Integrates Carbon and Nitrogen Signaling in Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 1901-1907.	2.2	35
16	NMR Structure of the HWE Kinase Associated Response Regulator Sma0114 in Its Activated State. Biochemistry, 2014, 53, 311-322.	2.5	13
17	Variations in moisture retention of contact-printed soil bacteria surface colonies using confocal microscopy. , 2014, , .		O
18	Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere. Frontiers in Plant Science, 2013, 4, 323.	3.6	18

#	Article	lF	CITATIONS
19	Nuclear Magnetic Resonance Structure and Dynamics of the Response Regulator Sma0114 from <i>Sinorhizobium meliloti</i> Biochemistry, 2012, 51, 6932-6941.	2.5	13
20	NMR assignments for the Sinorhizobium meliloti response regulator SmaO114. Biomolecular NMR Assignments, 2011, 5, 55-58.	0.8	4
21	Microâ€scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant, Cell and Environment, 2010, 33, 199-210.	5.7	23
22	Characterization of a Two-Component Regulatory System That Regulates Succinate-Mediated Catabolite Repression in Sinorhizobium meliloti. Journal of Bacteriology, 2010, 192, 5725-5735.	2.2	27
23	HPrK Regulates Succinate-Mediated Catabolite Repression in the Gram-Negative Symbiont <i>Sinorhizobium meliloti</i>). Journal of Bacteriology, 2009, 191, 298-309.	2.2	32
24	Plasmids That Insert into the Rhamnose Utilization Locus, <i>rha</i> : A Versatile Tool for Genetic Studies in <i>Sinorhizobium meliloti</i> . Journal of Molecular Microbiology and Biotechnology, 2009, 17, 201-210.	1.0	13
25	Live reports from the soil grain – the promise and challenge of microbiosensors. Functional Ecology, 2008, 22, 983-989.	3.6	12
26	<i>Sinorhizobium meliloti</i> Mutants Lacking Phosphotransferase System Enzyme HPr or EllA Are Altered in Diverse Processes, Including Carbon Metabolism, Cobalt Requirements, and Succinoglycan Production. Journal of Bacteriology, 2008, 190, 2947-2956.	2.2	42
27	Resource Exchange in the Rhizosphere: Molecular Tools and the Microbial Perspective. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 459-488.	8.3	97
28	Architecture of Infection Thread Networks in Developing Root Nodules Induced by the Symbiotic Bacterium Sinorhizobium meliloti on Medicago truncatula Â. Plant Physiology, 2006, 140, 661-670.	4.8	44
29	Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 2004, 68, 280-300.	6.6	709
30	Transcriptional control of a rRNA promoter of the nodulating symbiontSinorhizobium meliloti. FEMS Microbiology Letters, 2003, 226, 15-22.	1.8	8
31	Analysis of Infection Thread Development Using Gfp- and DsRed-Expressing <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2002, 184, 7042-7046.	2.2	188
32	Control of Inducer Accumulation Plays a Key Role in Succinate-Mediated Catabolite Repression in Sinorhizobium meliloti. Journal of Bacteriology, 2002, 184, 5385-5392.	2.2	31
33	Galactosides in the rhizosphere: Utilization by <i>Sinorhizobium meliloti</i> and development of a biosensor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4540-4545.	7.1	145
34	An AraC-like transcriptional activator is required for induction of genes needed for α-galactoside utilization inSinorhizobium meliloti. FEMS Microbiology Letters, 2000, 188, 23-27.	1.8	6
35	Hanging by a thread: invasion of legume plants by rhizobia. Current Opinion in Microbiology, 2000, 3, 613-617.	5.1	92
36	An AraC-like transcriptional activator is required for induction of genes needed for α-galactoside utilization in Sinorhizobium meliloti. FEMS Microbiology Letters, 2000, 188, 23-27.	1.8	3

#	Article	IF	CITATIONS
37	î±-Galactoside Uptake in <i>Rhizobium meliloti</i> : Isolation and Characterization of <i>agpA</i> , a Gene Encoding a Periplasmic Binding Protein Required for Melibiose and Raffinose Utilization. Journal of Bacteriology, 1998, 180, 5739-5748.	2.2	42
38	Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of Bacteriology, 1996, 178, 7159-7166.	2.2	237
39	In vitro developmental toxicity of five direct-acting alkylating agents in rodent embryos: Structure-activity patterns. Teratology, 1989, 40, 199-210.	1.6	18
40	Nodule Development in Legumes. Agronomy, 0, , 1-24.	0.2	0