Elizabeth O Harrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3931379/publications.pdf

Version: 2024-02-01

63 papers 1,945 citations

201385 27 h-index 253896 43 g-index

64 all docs

64 docs citations

times ranked

64

2404 citing authors

#	Article	IF	CITATIONS
1	Induction of Vascular Permeability by the Sphingosine-1-Phosphate Receptor–2 (S1P2R) and its Downstream Effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1312-1318.	1.1	297
2	Enhancement of Migration by Protein Kinase Cl $^\pm$ and Inhibition of Proliferation and Cell Cycle Progression by Protein Kinase Cl' in Capillary Endothelial Cells. Journal of Biological Chemistry, 1997, 272, 7390-7397.	1.6	117
3	Conventional Protein Kinase C Mediates Phorbol-Dibutyrate-Induced Cytoskeletal Remodeling in A7r5 Smooth Muscle Cells. Experimental Cell Research, 2002, 280, 64-74.	1.2	117
4	Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants, 2018, 7, 14.	2.2	84
5	Protein Kinase Cδ Inhibition of S-Phase Transition in Capillary Endothelial Cells Involves the Cyclin-dependent Kinase Inhibitor p27Kip1. Journal of Biological Chemistry, 1999, 274, 20805-20811.	1.6	66
6	Requirement for Protein Kinase C Activation in Basic Fibroblast Growth Factor–Induced Human Endothelial Cell Proliferation. Circulation Research, 1995, 77, 231-238.	2.0	64
7	Isoprenylcysteine Carboxyl Methyltransferase Activity Modulates Endothelial Cell Apoptosis. Molecular Biology of the Cell, 2003, 14, 848-857.	0.9	57
8	Transforming growth factor- \hat{l}^21 -induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. Journal of Applied Physiology, 2006, 101, 375-384.	1.2	57
9	Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L847-L857.	1.3	57
10	Role of Protein Kinase C Isoforms in Rat Epididymal Microvascular Endothelial Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 626-636.	1.4	54
11	Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovascular Research, 2017, 113, 234-246.	1.8	50
12	Circulating Endothelial Cells and Endothelial Progenitor Cells in Obstructive Sleep Apnea. Lung, 2008, 186, 145-150.	1.4	48
13	Apoptosis and lung injury. Keio Journal of Medicine, 2005, 54, 184-189.	0.5	46
14	Adenosine protected against pulmonary edema through transporter- and receptor A ₂ -mediated endothelial barrier enhancement. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L755-L767.	1.3	43
15	Protein tyrosine phosphatase-dependent proteolysis of focal adhesion complexes in endothelial cell apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L342-L353.	1.3	41
16	Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. Journal of Heart and Lung Transplantation, 2011, 30, 827-833.	0.3	38
17	Isoprenylcysteine Carboxyl Methyltransferase Modulates Endothelial Monolayer Permeability. Circulation Research, 2004, 94, 306-315.	2.0	37
18	PKCδregulates endothelial basal barrier function through modulation of RhoA GTPase activity. Experimental Cell Research, 2005, 308, 407-421.	1,2	35

#	Article	IF	CITATIONS
19	Release of Soluble E-Selectin from Activated Endothelial Cells upon Apoptosis. Lung, 2006, 184, 259-266.	1.4	35
20	Mechanism of extracellular ATP- and adenosine-induced apoptosis of cultured pulmonary artery endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L379-L388.	1.3	34
21	Natriuretic peptides differentially attenuate thrombin-induced barrier dysfunction in pulmonary microvascular endothelial cells. Experimental Cell Research, 2006, 312, 401-410.	1.2	34
22	Transforming growth factor \hat{l}^21 causes pulmonary microvascular endothelial cell apoptosis via ALK5. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L825-L838.	1.3	33
23	FAK blunts adenosine-homocysteine-induced endothelial cell apoptosis: requirement for PI 3-kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1135-L1142.	1.3	30
24	Protection against LPS-Induced Pulmonary Edema through the Attenuation of Protein Tyrosine Phosphatase–1B Oxidation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 623-632.	1.4	30
25	Mechanism of C-type natriuretic peptide-induced endothelial cell hyperpolarization. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L248-L256.	1.3	29
26	Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38î±. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L733-L742.	1.3	28
27	Barrier dysfunction and RhoA activation are blunted by homocysteine and adenosine in pulmonary endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1091-L1097.	1.3	28
28	Rottlerin causes pulmonary edema in vivo: a possible role for PKCδ. Journal of Applied Physiology, 2007, 103, 2084-2094.	1.2	25
29	Genetic disruption of protein kinase Cδreduces endotoxin-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L880-L888.	1.3	25
30	p18, a novel adaptor protein, regulates pulmonary endothelial barrier function <i>via</i> enhanced endocytic recycling of VEâ€cadherin. FASEB Journal, 2015, 29, 868-881.	0.2	25
31	SH2 Domain-Containing Protein Tyrosine Phosphatase 2 and Focal Adhesion Kinase Protein Interactions Regulate Pulmonary Endothelium Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 695-707.	1.4	23
32	Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L165-L176.	1.3	21
33	PKC \hat{l} and \hat{l} 2II regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L827-L836.	1.3	19
34	Interplay between FAK, PKCδ, and p190RhoGAP in the regulation of endothelial barrier function. Microvascular Research, 2012, 83, 12-21.	1.1	18
35	Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxidants and Redox Signaling, 2019, 31, 994-1008.	2.5	18
36	Diversity of the protein kinase C gene family. Trends in Cardiovascular Medicine, 1995, 5, 193-199.	2.3	16

#	Article	IF	Citations
37	Inhibition of ICMT Induces Endothelial Cell Apoptosis through GRP94. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 20-30.	1.4	16
38	Inhibition of mitochondrial reactive oxygen species improves coronary endothelial function after cardioplegic hypoxia/reoxygenation. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e207-e226.	0.4	15
39	PKCδ influences p190 phosphorylation and activity: Events independent of PKCδ-mediated regulation of endothelial cell stress fiber and focal adhesion formation and barrier function. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1179-1190.	1.1	14
40	Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 769-781.	1.4	12
41	Endothelial Proliferation, Migration, and Differentiation Are Blunted by Conditionally Expressed Protein Kinase C Pseudosubstrate Peptides. Biochemical and Biophysical Research Communications, 2000, 271, 499-508.	1.0	11
42	Heterogeneity in apoptotic responses of microvascular endothelial cells to oxidative stress. Journal of Cellular Physiology, 2012, 227, 1899-1910.	2.0	11
43	C-type natriuretic peptide does not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade. Life Sciences, 2011, 89, 460-466.	2.0	10
44	Coronary endothelial dysfunction prevented by small-conductance calcium-activated potassium channel activator in mice and patients with diabetes. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, e263-e280.	0.4	10
45	Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: considerations for use in pulmonary vascular disease. European Respiratory Journal, 2020, 55, 1901313.	3.1	10
46	Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A. Journal of Applied Physiology, 2013, 114, 307-315.	1.2	8
47	Nucleotide-induced PMN adhesion to cultured epithelial cells: possible role of MUC1 mucin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L874-L880.	1.3	7
48	Endothelial Cell Apoptosis. , 0, , 1081-1097.		7
49	Pulmonary endothelial cell signaling and function. Transactions of the American Clinical and Climatological Association, 2008, 119, 155-67; discussion 167-9.	0.9	7
50	Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L700-L709.	1.3	6
51	Extracellular vesicles released from p18 overexpressing pulmonary endothelial cells are barrier protective $\hat{a}\in$ potential implications for acute respiratory distress syndrome. Pulmonary Circulation, 2020, 10, 1-13.	0.8	5
52	Chronic Inhibition of mROS Protects Against Coronary Endothelial Dysfunction in Mice With Diabetes. Frontiers in Cell and Developmental Biology, 2021, 9, 643810.	1.8	5
53	Alterations in molecular chaperones and eIF2α during lung endothelial cell apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L501-L508.	1.3	3
54	Improved and Sustained Graduate Programs Diversity Outcomes: a 10-year Analysis and Summary of the Brown University IMSD Program. Journal for STEM Education Research, 2021, 4, 257-277.	0.5	3

#	Article	IF	CITATIONS
55	Agonists for Bitter Taste Receptors T2R10 and T2R38 Attenuate LPS-Induced Permeability of the Pulmonary Endothelium in vitro. Frontiers in Physiology, 2022, 13, 794370.	1.3	3
56	Formative evaluation results of a phase 2 Center of Biomedical Research Excellence (COBRE). Journal of Clinical and Translational Science, 2020, 4, 493-497.	0.3	2
57	Pulmonary Endothelial Cell Interactions with the Extracellular Matrix., 0,, 51-72.		1
58	The Role of PKC delta and p190RhoGAP in Actin Filament Stabilization. FASEB Journal, 2008, 22, 1122.8.	0.2	0
59	Protein Kinase C Isoforms in the Formation of Focal Adhesion Complexes: Investigated by Cell Impedance. , 2012, , 21-39.		O
60	The Influence Of PKCδActivity On RhoA Interaction With Its Effector Proteins. FASEB Journal, 2012, 26, 1130.4.	0.2	0
61	Active SHP2 protects the pulmonary endothelium through a FAKâ€mediated mechanism. FASEB Journal, 2013, 27, .	0.2	0
62	Carboxyl Methylation of Small GTPases and Endothelial Cell Function. , 2005, , 51-60.		0
63	Building Research Capacity in Vascular Biology in Rhode Island. Rhode Island Medical Journal (2013), 2021, 104, 50-53.	0.2	O