Michael H Kogut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/393119/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 2014, 360, 100-112.	1.8	521
2	Expression and function of Toll-like receptors in chicken heterophils. Developmental and Comparative Immunology, 2005, 29, 791-807.	2.3	208
3	Spatial and Temporal Changes in the Broiler Chicken Cecal and Fecal Microbiomes and Correlations of Bacterial Taxa with Cytokine Gene Expression. Frontiers in Veterinary Science, 2016, 3, 11.	2.2	169
4	Purified β-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. International Journal of Food Microbiology, 2005, 98, 309-318.	4.7	160
5	The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 2019, 250, 32-40.	2.2	149
6	Differential cytokine mRNA expression in heterophils isolated from <i>Salmonella</i> â€resistant and â€susceptible chickens. Immunology, 2004, 113, 139-148.	4.4	143
7	The avian heterophil. Developmental and Comparative Immunology, 2013, 41, 334-340.	2.3	117
8	In vivo activation of heterophil function in chickens following injection with <i>Salmonella enteritidis</i> -immune lymphokines. Journal of Leukocyte Biology, 1995, 57, 56-62.	3.3	115
9	Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microbial Pathogenesis, 1994, 16, 141-151.	2.9	113
10	The role of the gut microbiome in shaping the immune system of chickens. Veterinary Immunology and Immunopathology, 2018, 204, 44-51.	1.2	107
11	Differential Regulation of Cytokine Gene Expression by Avian Heterophils During Receptor-Mediated Phagocytosis of Opsonized and Nonopsonized <i>Salmonella enteritidis</i> . Journal of Interferon and Cytokine Research, 2003, 23, 319-327.	1.2	104
12	Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Molecular Immunology, 2006, 43, 783-789.	2.2	99
13	Identification of CpG oligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production in avian macrophage and peripheral blood mononuclear cells. Developmental and Comparative Immunology, 2003, 27, 621-627.	2.3	98
14	Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 2016, 3, 71.	2.2	96
15	Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes and Infection, 2006, 8, 1866-1874.	1.9	95
16	Microbiome and pathogen interaction with the immune system. Poultry Science, 2020, 99, 1906-1913.	3.4	95
17	Avian heterophils and monocytes: phagocytic and bactericidal activities against Salmonella enteritidis. Veterinary Microbiology, 1994, 38, 293-305.	1.9	90
18	Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial toll agonists. Developmental and Comparative Immunology, 2003, 27, 423-429.	2.3	83

#	Article	IF	CITATIONS
19	Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Molecular Immunology, 2007, 44, 3234-3242.	2.2	82
20	Inflammatory phenotypes in the intestine of poultry: not all inflammation is created equal. Poultry Science, 2018, 97, 2339-2346.	3.4	81
21	Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Frontiers in Genetics, 2014, 5, 339.	2.3	78
22	Modulation of chicken macrophage effector function by TH1/TH2 cytokines. Cytokine, 2011, 53, 363-369.	3.2	77
23	Lipopolysaccharide Binding Protein/CD14/TLR4-Dependent Recognition of Salmonella LPS Induces the Functional Activation of Chicken Heterophils and Up-Regulation of Pro-Inflammatory Cytokine and Chemokine Gene Expression in These Cells. Animal Biotechnology, 2005, 16, 165-181.	1.5	76
24	Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics, 2008, 9, 526.	2.8	73
25	CpG-ODN-induced nitric oxide production is mediated through clathrin-dependent endocytosis, endosomal maturation, and activation of PKC, MEK1/2 and p38 MAPK, and NF-I®B pathways in avian macrophage cells (HD11). Cellular Signalling, 2003, 15, 911-917.	3.6	70
26	Heterophils isolated from chickens resistant to extra-intestinal <i>Salmonella enteritidis</i> infection express higher levels of pro-inflammatory cytokine mRNA following infection than heterophils from susceptible chickens. Epidemiology and Infection, 2004, 132, 1029-1037.	2.1	70
27	Gene Expression Profiling of the Local Cecal Response of Genetic Chicken Lines That Differ in Their Susceptibility to Campylobacter jejuni Colonization. PLoS ONE, 2010, 5, e11827.	2.5	69
28	Gene Expression Analysis of Toll-Like Receptor Pathways in Heterophils from Genetic Chicken Lines that Differ in Their Susceptibility to Salmonella enteritidis. Frontiers in Genetics, 2012, 3, 121.	2.3	69
29	Inflammation: friend or foe for animal production?. Poultry Science, 2018, 97, 510-514.	3.4	69
30	Differential activation of signal transduction pathways mediating phagocytosis, oxidative burst, and degranulation by chicken heterophils in response to stimulation with opsonized Salmonella enteritidis. Inflammation, 2001, 25, 7-15.	3.8	68
31	Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Science, 2020, 99, 653-659.	3.4	65
32	IFN-Î ³ Priming of Chicken Heterophils Upregulates the Expression of Proinflammatory and Th1 Cytokine mRNA Following Receptor-Mediated Phagocytosis ofSalmonella entericaserovarenteritidis. Journal of Interferon and Cytokine Research, 2005, 25, 73-81.	1.2	64
33	Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Veterinary Microbiology, 2009, 137, 313-319.	1.9	64
34	Age-dependent phagocytosis and bactericidal activities of the chicken heterophil. Developmental and Comparative Immunology, 1998, 22, 103-109.	2.3	63
35	A Comparative Study on Invasion, Survival, Modulation of Oxidative Burst, and Nitric Oxide Responses of Macrophages (HD11), and Systemic Infection in Chickens by Prevalent Poultry <i>Salmonella</i> Serovars. Foodborne Pathogens and Disease, 2012, 9, 1104-1110.	1.8	63
36	Characterization of the Pattern of Inflammatory Cell Influx in Chicks Following the Intraperitoneal Administration of Live Salmonella enteritidis and Salmonella enteritidis-Immune Lymphokines. Poultry Science, 1995, 74, 8-17.	3.4	62

#	Article	IF	CITATIONS
37	A Historical Review on Antibiotic Resistance of Foodborne Campylobacter. Frontiers in Microbiology, 2019, 10, 1509.	3.5	62
38	Profiling pro-inflammatory cytokine and chemokine mRNA expression levels as a novel method for selection of increased innate immune responsiveness. Veterinary Immunology and Immunopathology, 2008, 126, 35-42.	1.2	61
39	In vitro interleukin-1 and tumor necrosis factor-alpha production by macrophages from chickens infected with either Eimeria maxima or Eimeria tenella. International Journal for Parasitology, 1993, 23, 639-645.	3.1	60
40	In vitro activation of chicken leukocytes and in vivo protection against <i>Salmonella enteritidis</i> organ invasion and peritoneal <i>S. enteritidis</i> infection-induced mortality in neonatal chickens by immunostimulatory CpG oligodeoxynucleotide. FEMS Immunology and Medical Microbiology, 2005, 43, 81-89.	2.7	60
41	Functional comparison of heterophils isolated from commercial broiler chickens. Avian Pathology, 2003, 32, 95-102.	2.0	59
42	Heterophils are associated with resistance to systemicSalmonella enteritidisinfections in genetically distinct chicken lines. FEMS Immunology and Medical Microbiology, 2005, 43, 149-154.	2.7	59
43	In vivo priming heterophil innate immune functions and increasing resistance to Salmonella enteritidis infection in neonatal chickens by immune stimulatory CpG oligodeoxynucleotides. Veterinary Immunology and Immunopathology, 2007, 117, 275-283.	1.2	59
44	Salmonella enterica Typhimurium infection causes metabolic changes in chicken muscle involving AMPK, fatty acid and insulin/mTOR signaling. Veterinary Research, 2013, 44, 35.	3.0	59
45	Dynamics of a protective avian inflammatory response: the role of an IL-8-like cytokine in the recruitment of heterophils to the site of organ invasion by Salmonella enteritidis. Comparative Immunology, Microbiology and Infectious Diseases, 2002, 25, 159-172.	1.6	58
46	Immunometabolic Phenotype Alterations Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken Intestine. Frontiers in Immunology, 2017, 8, 372.	4.8	57
47	Recombinant Interferon-γ Inhibits Cell Invasion byEimeria tenella. Journal of Interferon Research, 1989, 9, 67-77.	1.2	56
48	Dynamics of avian inflammatory response toSalmonella-immune lymphokines. Inflammation, 1994, 18, 373-388.	3.8	56
49	Selection of Broilers with Improved Innate Immune Responsiveness to Reduce On-Farm Infection by Foodborne Pathogens. Foodborne Pathogens and Disease, 2009, 6, 777-783.	1.8	56
50	Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by Gram-negative and Gram-positive bacteria, but not TLR agonists. Veterinary Immunology and Immunopathology, 2010, 136, 151-156.	1.2	56
51	Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poultry Science, 2017, 96, 4307-4316.	3.4	56
52	An immunologist's perspective on nutrition, immunity, and infectious diseases: Introduction and overview. Journal of Applied Poultry Research, 2009, 18, 103-110.	1.2	55
53	Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-γ and regulatory cytokine IL-10 expression in chicken monocytes. Developmental and Comparative Immunology, 2012, 36, 756-760.	2.3	55
54	The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry?. Journal of Applied Poultry Research, 2013, 22, 637-646.	1.2	54

#	Article	IF	CITATIONS
55	Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics, 2009, 61, 71-77.	2.4	53
56	Combined CpG and poly I:C stimulation of monocytes results in unique signaling activation not observed with the individual ligands. Cellular Signalling, 2013, 25, 2246-2254.	3.6	51
57	Differential effects of age on chicken heterophil functional activation by recombinant chicken interleukin-2. Developmental and Comparative Immunology, 2002, 26, 817-830.	2.3	50
58	Heterophil cytokine mRNA profiles from genetically distinct lines of chickens with differential heterophil-mediated innate immune responses. Avian Pathology, 2006, 35, 102-108.	2.0	50
59	Administration of a Postbiotic Causes Immunomodulatory Responses in Broiler Gut and Reduces Disease Pathogenesis Following Challenge. Microorganisms, 2019, 7, 268.	3.6	50
60	In ovo treatment with CpG oligodeoxynucleotides decreases colonization of Salmonella enteriditis in broiler chickens. Veterinary Immunology and Immunopathology, 2009, 127, 371-375.	1.2	49
61	Immunoprophylaxis of Salmonella enteritidis Infection by Lymphokines in Leghorn Chicks. Avian Diseases, 1993, 37, 1062.	1.0	48
62	Effect of a Commercial Competitive Exclusion Culture (Preempt [Trademark]) on Mortality and Horizontal Transmission of Salmonella gallinarum in Broiler Chickens. Avian Diseases, 1998, 42, 651.	1.0	47
63	Modulation of the Immune Response to Improve Health and Reduce Foodborne Pathogens in Poultry. Microorganisms, 2019, 7, 65.	3.6	47
64	Inflammatory agonist stimulation and signal pathway of oxidative burst in neonatal chicken heterophils. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 135, 177-184.	1.8	46
65	Flagellin and lipopolysaccharide up-regulation of IL-6 and CXCLi2 gene expression in chicken heterophils is mediated by ERK1/2-dependent activation of AP-1 and NF-I®B signaling pathways. Innate Immunity, 2008, 14, 213-222.	2.4	46
66	Impact of nutrition on the innate immune response to infection in poultry. Journal of Applied Poultry Research, 2009, 18, 111-124.	1.2	46
67	Gut immunity: its development and reasons and opportunities for modulation in monogastric production animals. Animal Health Research Reviews, 2018, 19, 46-52.	3.1	46
68	Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection. International Journal of Molecular Sciences, 2016, 17, 1207.	4.1	45
69	Priming by recombinant chicken interleukin-2 induces selective expression of IL-8 and IL-18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteritidis. Molecular Immunology, 2003, 40, 603-610.	2.2	43
70	The Paternal Effect of Campylobacter jejuni Colonization in Ceca in Broilers. Poultry Science, 2008, 87, 1742-1747.	3.4	43
71	CpG oligodeoxynucleotide and double-stranded RNA synergize to enhance nitric oxide production and mRNA expression of inducible nitric oxide synthase, pro-inflammatory cytokines and chemokines in chicken monocytes. Innate Immunity, 2011, 17, 137-144.	2.4	42
72	AMPK and mTOR: sensors and regulators of immunometabolic changes during Salmonella infection in the chicken. Poultry Science, 2016, 95, 345-353.	3.4	42

#	Article	IF	CITATIONS
73	Interferon-g-Mediated Inhibition of the Development of Eimeria tenella in Cultured Cells. Journal of Parasitology, 1989, 75, 313.	0.7	41
74	The Effect of 5-Fluorouracil Treatment of Chicks: A Cell Depletion Model for the Study of Avian Polymorphonuclear Leukocytes and Natural Host Defenses. Poultry Science, 1993, 72, 1873-1880.	3.4	39
75	Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens. Poultry Science, 2015, 94, 1828-1835.	3.4	39
76	The selective Dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 2009, 127, 162-166.	1.2	37
77	Dietary Factors as Triggers of Low-Grade Chronic Intestinal Inflammation in Poultry. Microorganisms, 2020, 8, 139.	3.6	36
78	Salmonella enteritidis Immune Leukocyte-Stimulated Soluble Factors: Effects on Increased Resistance to Salmonella Organ Invasion in Day-Old Leghorn Chicks. Poultry Science, 1993, 72, 2264-2271.	3.4	35
79	Lymphokine-augmented activation of avian heterophils. Poultry Science, 1998, 77, 964-971.	3.4	34
80	Differential nitric oxide production by chicken immune cells. Developmental and Comparative Immunology, 2003, 27, 603-610.	2.3	33
81	Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1. Molecular Immunology, 2007, 44, 1729-1736.	2.2	33
82	Modulation of Chicken Intestinal Immune Gene Expression by Small Cationic Peptides as Feed Additives during the First Week Posthatch. Vaccine Journal, 2013, 20, 1440-1448.	3.1	33
83	Antibiotics and Host-Tailored Probiotics Similarly Modulate Effects on the Developing Avian Microbiome, Mycobiome, and Host Gene Expression. MBio, 2019, 10, .	4.1	33
84	Effect of Induced Molting on Heterophil Function in White Leghorn Hens. Avian Diseases, 1999, 43, 538.	1.0	32
85	A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens. Frontiers in Veterinary Science, 2015, 2, 33.	2.2	31
86	Ontogeny of the phagocytic and bactericidal activities of turkey heterophils and their potentiation bySalmonella enteritidis-immune lymphokines. FEMS Immunology and Medical Microbiology, 1997, 19, 95-100.	2.7	30
87	CpG-oligodeoxynucleotide-stimulated chicken heterophil degranulation is serum cofactor and cell surface receptor dependent. Developmental and Comparative Immunology, 2005, 29, 255-264.	2.3	30
88	Differential activation of signal transduction pathways mediating oxidative burst by chicken heterophils in response to stimulation with lipopolysaccharide and lipoteichoic acid. Inflammation, 2003, 27, 225-231.	3.8	29
89	A Comparison of the Chicken and Turkey Proteomes and Phosphoproteomes in the Development of Poultry-Specific Immuno-Metabolism Kinome Peptide Arrays. Frontiers in Veterinary Science, 2014, 1, 22.	2.2	29
90	Issues and consequences of using nutrition to modulate the avian immune response. Journal of Applied Poultry Research, 2017, 26, 605-612.	1.2	29

#	Article	IF	CITATIONS
91	Deciphering desirable immune responses from disease models with resistant and susceptible chickens. Poultry Science, 2019, 98, 1634-1642.	3.4	29
92	Cytokines and prevention of infectious diseases in poultry: A review. Avian Pathology, 2000, 29, 395-404.	2.0	28
93	Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis. Poultry Science, 2014, 93, 535-544.	3.4	27
94	Role of a Bacillus subtilis Direct-Fed Microbial on Digesta Viscosity, Bacterial Translocation, and Bone Mineralization in Turkey Poults Fed with a Rye-Based Diet. Frontiers in Veterinary Science, 2014, 1, 26.	2.2	27
95	Caecal transcriptome analysis of colonized and nonâ€colonized chickens within two genetic lines that differ in caecal colonization by <i>Campylobacter jejuni</i> . Animal Genetics, 2011, 42, 491-500.	1.7	26
96	Broiler breeders with an efficient innate immune response are more resistant to Eimeria tenella. Poultry Science, 2011, 90, 1014-1019.	3.4	26
97	Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens. Immunogenetics, 2012, 64, 59-69.	2.4	26
98	Electron-Beam–Inactivated Vaccine Against <i>Salmonella</i> Enteritidis Colonization in Molting Hens. Avian Diseases, 2015, 59, 165-170.	1.0	25
99	In Ovo Administration of Salmonella enteritidis-Immune Lymphokines Confers Protection to Neonatal Chicks Against Salmonella enteritidis Organ Infectivity. Poultry Science, 1995, 74, 18-25.	3.4	24
100	Neutrophil function of neonatal foals is enhanced in vitro by CpG oligodeoxynucleotide stimulation. Veterinary Immunology and Immunopathology, 2012, 145, 290-297.	1.2	24
101	Fate of <i>Salmonella</i> Senftenberg in broiler chickens evaluated by challenge experiments. Avian Pathology, 2014, 43, 305-309.	2.0	24
102	Dynamics of cytokine production during coccidial infections in chickens: colony-stimulating factors and interferon. FEMS Immunology and Medical Microbiology, 1993, 6, 45-52.	2.7	23
103	Selective pharmacological inhibitors reveal the role of Syk tyrosine kinase, phospholipase C, phosphatidylinositol-3′-kinase, and p38 mitogen-activated protein kinase in Fc receptor-mediated signaling of chicken heterophil degranulation. International Immunopharmacology, 2002, 2, 963-973.	3.8	23
104	Association between in vitro heterophil function and the feathering gene in commercial broiler chickens. Avian Pathology, 2003, 32, 483-488.	2.0	23
105	Pharmacological analysis of signal transduction pathways required for oxidative burst in chicken heterophils stimulated by a Toll-like receptor 2 agonist. International Immunopharmacology, 2003, 3, 1677-1684.	3.8	23
106	Differential induction of nitric oxide, degranulation, and oxidative burst activities in response to microbial agonist stimulations in monocytes and heterophils from young commercial turkeys. Veterinary Immunology and Immunopathology, 2008, 123, 177-185.	1.2	23
107	Recombinant chicken IL-6 does not activate heterophils isolated from day-old chickens in vitro. Developmental and Comparative Immunology, 2005, 29, 375-383.	2.3	22
108	Response of nitric oxide production to CpG oligodeoxynucleotides in turkey and chicken peripheral blood monocytes. FEMS Immunology and Medical Microbiology, 2006, 48, 99-106.	2.7	22

Michael H Kogut

#	Article	IF	CITATIONS
109	Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella. Poultry Science, 2015, 94, 37-42.	3.4	22
110	Dynamics of the avian inflammatory response toSalmonellafollowing administration of the toll-like receptor 5 agonist flagellin. FEMS Immunology and Medical Microbiology, 2007, 51, 112-117.	2.7	21
111	Selection for pro-inflammatory mediators produces chickens more resistant to Clostridium perfringens-induced necrotic enteritis. Poultry Science, 2016, 95, 370-374.	3.4	21
112	Chicken macrophages infected with Salmonella (S.) Enteritidis or S. Heidelberg produce differential responses in immune and metabolic signaling pathways. Veterinary Immunology and Immunopathology, 2018, 195, 46-55.	1.2	21
113	Heat Stress and Feed Restriction Distinctly Affect Performance, Carcass and Meat Yield, Intestinal Integrity, and Inflammatory (Chemo)Cytokines in Broiler Chickens. Frontiers in Physiology, 2021, 12, 707757.	2.8	21
114	Comparison of Prophylactic and Therapeutic Efficacy of Salmonella enteritidis-immune Lymphokines against Salmonella enteritidis Organ Invasion in Neonatal Leghorn Chicks. Avian Diseases, 1995, 39, 21.	1.0	20
115	Evaluation of <i>Salmonella enteritidis</i> â€immune lymphokines on host resistance to <i>Salmonella enterica</i> ser. <i>gallinarum</i> infection in broiler chicks. Avian Pathology, 1996, 25, 737-749.	2.0	20
116	Involvement of phosphatidylinositol-phospholipase C in immune response to Salmonella lipopolysacharide in chicken macrophage cells (HD11). International Immunopharmacology, 2006, 6, 1780-1787.	3.8	20
117	Yeast-surface expressed BVDV E2 protein induces a Th1/Th2 response in naÃ ⁻ ve T cells. Developmental and Comparative Immunology, 2012, 37, 107-114.	2.3	20
118	What's so special about chicken immunology?. Developmental and Comparative Immunology, 2013, 41, 307-309.	2.3	20
119	Poultry processing and the application of microbiome mapping. Poultry Science, 2020, 99, 678-688.	3.4	20
120	Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Frontiers in Immunology, 2021, 12, 676628.	4.8	20
121	Gut health in poultry CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-7.	1.0	20
122	Loxoribine pretreatment reduces Salmonella Enteritidis organ invasion in 1-day-old chickens. Poultry Science, 2012, 91, 1038-1042.	3.4	19
123	Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni. Poultry Science, 2017, 96, 1623-1627.	3.4	19
124	Neutralization of G-CSF inhibits ILK-induced heterophil influx: granulocyte-colony stimulating factor mediates the Salmonella enteritidis-immune lymphokine potentiation of the acute avian inflammatory response. Inflammation, 1997, 21, 9-25.	3.8	18
125	The use of selective pharmacological inhibitors to delineate signal transduction pathways activated during complement receptor-mediated degranulation in chicken heterophils. International Immunopharmacology, 2003, 3, 693-706.	3.8	18
126	Dietary <scp>l</scp> â€arginine supplementation influences growth performance and Bâ€cell secretion of immunoglobulin in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1125-1134.	2.2	18

#	Article	IF	CITATIONS
127	The Preliminary Development of an in vitro Poultry Cecal Culture Model to Evaluate the Effects of Original XPCTM for the Reduction of Campylobacter jejuni and Its Potential Effects on the Microbiota. Frontiers in Microbiology, 2019, 10, 3062.	3.5	18
128	Chicken scavenger receptors and their ligand-induced cellular immune responses. Molecular Immunology, 2009, 46, 2218-2225.	2.2	17
129	Altered expression of lactate dehydrogenase and monocarboxylate transporter involved in lactate metabolism in broiler wooden breast. Poultry Science, 2020, 99, 11-20.	3.4	17
130	Feeding the BT Cationic Peptides to Chickens at Hatch Reduces Cecal Colonization by <i>Salmonella enterica</i> Serovar Enteritidis and Primes Innate Immune Cell Functional Activity. Foodborne Pathogens and Disease, 2010, 7, 23-30.	1.8	16
131	Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poultry Science, 2022, 101, 101673.	3.4	16
132	Efficacy of Salmonella enteritidis (SE)-Immune Lymphokines from Chickens and Turkeys on SE Liver Invasion in One-Day-Old Chicks and Turkey Poults. Avian Diseases, 1996, 40, 186.	1.0	15
133	Efficacy of Salmonella enteritidis-immune lymphokines on horizontal transmission of S. arizonae in turkeys and S. gallinarum in chickens. International Journal of Food Microbiology, 1999, 48, 139-148.	4.7	15
134	Intramuscular Administration of a Synthetic CpC-Oligodeoxynucleotide Modulates Functional Responses of Neutrophils of Neonatal Foals. PLoS ONE, 2014, 9, e109865.	2.5	15
135	A microencapsulated feed additive containing organic acids, thymol, and vanillin increases in vitro functional activity of peripheral blood leukocytes from broiler chicks. Poultry Science, 2020, 99, 3428-3436.	3.4	15
136	The effect of cyclosporin a on the development of Eimeria in non-specific hosts. International Journal for Parasitology, 1991, 21, 979-983.	3.1	14
137	Interaction of dexamethasone andSalmonella enteritidisimmune lymphokines onSalmonella enteritidisorgan invasion and in vitro polymorphonuclear leukocyte function FEMS Immunology and Medical Microbiology, 1995, 11, 25-34.	2.7	14
138	Enhancement of phagocytosis and bacterial killing by heterophils from neonatal chicks after administration of Salmonella enteritidis-immune lymphokines. Veterinary Microbiology, 1999, 65, 133-143.	1.9	14
139	BT cationic peptides: Small peptides that modulate innate immune responses of chicken heterophils and monocytes. Veterinary Immunology and Immunopathology, 2012, 145, 151-158.	1.2	14
140	Immunometabolism and the Kinome Peptide Array: A New Perspective and Tool for the Study of Gut Health. Frontiers in Veterinary Science, 2015, 2, 44.	2.2	14
141	Influence of different yeast cell wall preparations and their components on performance and immune and metabolic pathways in Clostridium perfringens-challenged broiler chicks. Poultry Science, 2018, 97, 203-210.	3.4	14
142	Nitric Oxide as a Biomarker of Intracellular Salmonella Viability and Identification of the Bacteriostatic Activity of Protein Kinase A Inhibitor H-89. PLoS ONE, 2013, 8, e58873.	2.5	14
143	Signal transduction pathways activated by engaging immunoglobulin Fc receptors on chicken heterophils. Developmental and Comparative Immunology, 2001, 25, 639-646.	2.3	13
144	From crypts to enteroids: establishment and characterization of avian intestinal organoids. Poultry Science, 2022, 101, 101642.	3.4	13

#	Article	IF	CITATIONS
145	Comparison of heterophil functions of modern commercial and wild-type Rio Grande turkeys. Avian Pathology, 2006, 35, 217-223.	2.0	12
146	Characterization of Cytokine Expression Induced by Avian Influenza Virus Infection with Real-Time RT-PCR. Methods in Molecular Biology, 2014, 1161, 217-233.	0.9	12
147	Differential expression of adhesion molecules by chicken heterophils activated in vivo with Salmonella enteritidis-immune lymphokines. Veterinary Immunology and Immunopathology, 1998, 62, 83-95.	1.2	11
148	Efficacy of Two Avian Salmonella-Immune Lymphokines against Liver Invasion in Chickens by Salmonella Serovars with Different O-Group Antigens. Avian Diseases, 1997, 41, 181.	1.0	10
149	Comparison of MAP and tyrosine kinase signaling in heterophils from commercial and wild-type turkeys. Developmental and Comparative Immunology, 2007, 31, 927-933.	2.3	10
150	Bacterial toll-like receptor agonists induce sequential NF-κB-mediated leukotriene B4 and prostaglandin E2 production in chicken heterophils. Veterinary Immunology and Immunopathology, 2012, 145, 159-170.	1.2	10
151	Differential Levels of Cecal Colonization by Salmonella Enteritidis in Chickens Triggers Distinct Immune Kinome Profiles. Frontiers in Veterinary Science, 2017, 4, 214.	2.2	10
152	rP33 Activates Bacterial Killing by Chicken Peripheral Blood Heterophils. Journal of Food Protection, 2003, 66, 787-792.	1.7	9
153	The feathering gene is linked to degranulation and oxidative burst not cytokine/chemokine mRNA expression levels orSalmonella enteritidisorgan invasion in broilers. Avian Pathology, 2006, 35, 465-470.	2.0	9
154	Effects of avian triggering receptor expressed on myeloid cells (TREM-A1) activation on heterophil functional activities. Developmental and Comparative Immunology, 2012, 36, 157-165.	2.3	9
155	The biological effects of microencapsulated organic acids and botanicals induces tissue-specific and dose-dependent changes to the Gallus gallus microbiota. BMC Microbiology, 2020, 20, 332.	3.3	9
156	Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poultry Science, 2020, 99, 2955-2966.	3.4	9
157	Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poultry Science, 2021, 100, 47-54.	3.4	9
158	Effects of Prebiotics and Probiotics on the Host Immune Response. , 2012, , 61-72.		9
159	Phospholipase C, phosphatidylinositol 3-kinase, and intracellular [Ca2+] mediate the activation of chicken HD11 macrophage cells by CpG oligodeoxynucleotide. Developmental and Comparative Immunology, 2008, 32, 1111-1118.	2.3	8
160	Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers. Avian Pathology, 2011, 40, 289-297.	2.0	8
161	Effects of Salmonella enterica ser. Enteritidis and Heidelberg on host CD4+CD25+ regulatory T cell suppressive immune responses in chickens. PLoS ONE, 2021, 16, e0260280.	2.5	8
162	Electron-beam Irradiation Inactivation of Salmonella: Effects on Innate Immunity and Induction of Protection Against Salmonella enterica serovar Typhimurium Challenge of Chickens. Procedia in Vaccinology, 2012, 6, 47-63.	0.4	7

#	Article	IF	CITATIONS
163	Wild-type and mutant AvrAâ^'Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation. Poultry Science, 2016, 95, 354-363.	3.4	7
164	Cross-protective Salmonella vaccine reduces cecal and splenic colonization of multidrug-resistant Salmonella enterica serovar Heidelberg. Vaccine, 2019, 37, 1255-1259.	3.8	7
165	Oral Treatment With Ileal Spores Triggers Immunometabolic Shifts in Chicken Gut. Frontiers in Veterinary Science, 2020, 7, 629.	2.2	7
166	A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poultry Science, 2022, 101, 101753.	3.4	7
167	A Role for the Microbiota in the Immune Phenotype Alteration Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken. Microorganisms, 2020, 8, 1879.	3.6	6
168	Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. Advances in Experimental Medicine and Biology, 2022, 1354, 145-159.	1.6	6
169	The Effect of Silica Injections on the Rejection of Eimeria from Nonspecific Hosts. Journal of Parasitology, 1981, 67, 960.	0.7	5
170	Editorial: Poultry Coccidiosis: Strategies to Understand and Control. Frontiers in Veterinary Science, 2020, 7, 599322.	2.2	5
171	Editorial: Mechanisms of Persistence, Survival, and Transmission of Bacterial Foodborne Pathogens in Production Animals. Frontiers in Veterinary Science, 2018, 5, 139.	2.2	4
172	Competitive Exclusion of Intra-Genus Salmonella in Neonatal Broilers. Microorganisms, 2021, 9, 446.	3.6	4
173	Immunoprophylaxis of Salmonella Gallinarum Infection by Salmonella Enteritidis-Immune Lymphokines in Broiler Chicks. Advances in Experimental Medicine and Biology, 1997, 412, 413-420.	1.6	4
174	Prophylactic Administration of Immune Lymphokine Derived From T Cells of Salmonella Enteritidis-Immune Pigs. Advances in Experimental Medicine and Biology, 1999, 473, 299-307.	1.6	4
175	Reserpine improves Enterobacteriaceae resistance in chicken intestine via neuro-immunometabolic signaling and MEK1/2 activation. Communications Biology, 2021, 4, 1359.	4.4	4
176	Obligate Brood Parasites Show More Functionally Effective Innate Immune Responses: An Eco-immunological Hypothesis. Evolutionary Biology, 2013, 40, 554-561.	1.1	3
177	Perspectives and Research Challenges in Veterinary Infectious Diseases. Frontiers in Veterinary Science, 2014, 1, 21.	2.2	3
178	Controlling the Colonization of Clostridium perfringens in Broiler Chickens by an Electron-Beam-Killed Vaccine. Animals, 2021, 11, 671.	2.3	3
179	Measurement of Avian Cytokines with Real-Time RT-PCR Following Infection with the Avian Influenza Virus. , 2008, 436, 127-134.		3
180	Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3

#	Article	IF	CITATIONS
181	Resistance to Velogenic Newcastle Disease Virus in Leghorn Chickens by Use of Prophylactic Lymphokines. Avian Diseases, 2002, 46, 525-534.	1.0	2
182	Critical Role of Glycogen Synthase Kinase-3β in Regulating the Avian Heterophil Response to Salmonella enterica Serovar Enteritidis. Frontiers in Veterinary Science, 2014, 1, 10.	2.2	2
183	Short Communication: Preliminary Differences Identified in Genes Responsible for Biofilm Formation in Poultry Isolates of Salmonella enterica Heidelberg, Enteritidis, and Kentucky. Microorganisms, 2019, 7, 196.	3.6	2
184	The Reduction of Pathogen Load on Ross 708 Broilers when Using Different Sources of Commercial Peracetic Acid Sanitizers in a Pilot Processing Plant. Microorganisms, 2019, 7, 503.	3.6	2
185	Inhibition of calmodulin increases intracellular survival of Salmonella in chicken macrophage cells. Veterinary Microbiology, 2019, 232, 156-161.	1.9	2
186	The Effect of Acid Sanitizers on the Microbiome of Re-use Water. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	2
187	Ontogeny of the phagocytic and bactericidal activities of turkey heterophils and their potentiation by Salmonella enteritidis-immune lymphokines. FEMS Immunology and Medical Microbiology, 1997, 19, 95-100.	2.7	2
188	Immunophysiology of the avian immune system. , 2022, , 591-610.		2
189	Impact of the gut microbiota on the immune system. , 2022, , 353-364.		2
190	Avian granulocytes. , 2022, , 197-203.		2
191	Enhanced Innate Immune Responses in a Brood Parasitic Cowbird Species: Degranulation and Oxidative Burst. Avian Diseases, 2013, 57, 285-289.	1.0	1
192	Role of JAK-STAT Pathway in Broiler Chicks Fed with Chestnut Tannins. Animals, 2021, 11, 337.	2.3	1
193	Presence of Interferon-Gamma and IL-2 in Supernatants of Salmonella enteritidis-Immune Lymphokines. International Journal of Poultry Science, 2009, 8, 820-823.	0.1	1
194	Gut health in poultry and considerations of additives as alternatives to antibiotics CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-6.	1.0	1
195	Factors modulating the avian immune system. , 2022, , 419-435.		1
196	The Relationship Between the Immune Response and Susceptibility to Salmonella enterica Serovar Enteritidis Infection in the Laying Hen. , 2017, , 209-234.		0
197	Advances in Vaccines for Controlling Foodborne Salmonella spp. in Poultry. , 2019, , 161-189.		Ο
198	Effect of CPG on swine neutrophils and use against Salmonella in pigs. , 0, , .		0

Effect of CPG on swine neutrophils and use against Salmonella in pigs. , 0, , . 198