Antoni Parcerisas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3930113/publications.pdf

Version: 2024-02-01

50276 64796 7,292 131 46 79 citations h-index g-index papers 136 136 136 8598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature, 1997, 385, 70-74.	27.8	442
2	Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nature Neuroscience, 2007, 10, 1407-1413.	14.8	320
3	Glutamate-like Immunoreactivity and Fate of Cajal-Retzius Cells in the Murine Cortex as Identified with Calretinin Antibody. Cerebral Cortex, 1995, 5, 13-21.	2.9	228
4	The Cells of Cajal-Retzius: Still a Mystery One Century After. Neuron, 2005, 46, 389-394.	8.1	212
5	Reelin expression and glycosylation patterns are altered in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5573-5578.	7.1	196
6	Reelin Regulates Postnatal Neurogenesis and Enhances Spine Hypertrophy and Long-Term Potentiation. Journal of Neuroscience, 2010, 30, 4636-4649.	3.6	195
7	The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Research Reviews, 2005, 49, 22-47.	9.0	188
8	Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5193-5198.	7.1	176
9	Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. Journal of Comparative Neurology, 1990, 293, 1-25.	1.6	163
10	The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anatomy and Embryology, 1990, 181, 413-425.	1.5	155
11	Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nature Communications, 2016, 7, 12187.	12.8	153
12	A TrkB/EphrinA Interaction Controls Retinal Axon Branching and Synaptogenesis. Journal of Neuroscience, 2008, 28, 12700-12712.	3.6	142
13	Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus, 1994, 4, 65-69.	1.9	140
14	Developmental History of the Subplate and Developing White Matter in the Murine Neocortex. Neuronal Organization and Relationship with the Main Afferent Systems at Embryonic and Perinatal Stages. Cerebral Cortex, 2000, 10, 784-801.	2.9	125
15	Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. Journal of Comparative Neurology, 1993, 337, 208-230.	1.6	121
16	MAP1B Is Required for Netrin 1 Signaling in Neuronal Migration and Axonal Guidance. Current Biology, 2004, 14, 840-850.	3.9	121
17	A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Research, 1989, 503, 170-174.	2.2	119
18	Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. Molecular Brain Research, 1995, 32, 1-13.	2.3	115

#	Article	IF	CITATIONS
19	A role of MAP1B in Reelin-dependent Neuronal Migration. Cerebral Cortex, 2005, 15, 1134-1145.	2.9	111
20	Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Molecular Medicine, 2011, 3, 667-681.	6.9	109
21	Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer's disease. Nature Communications, 2014, 5, 3443.	12.8	108
22	Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. Journal of Neuroscience Research, 2007, 85, 2741-2755.	2.9	89
23	Transient Colocalization of Parvalbumin and Calbindin D28k in the Postnatal Cerebral Cortex: Evidence for a Phenotypic Shift in Developing Nonpyramidal Neurons. European Journal of Neuroscience, 1996, 8, 1329-1339.	2.6	86
24	Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 2004, 13, 2581-2594.	2.9	86
25	Overexpression of Reelin Prevents the Manifestation of Behavioral Phenotypes Related to Schizophrenia and Bipolar Disorder. Neuropsychopharmacology, 2011, 36, 2395-2405.	5.4	85
26	The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nature Communications, 2012, 3, 814.	12.8	84
27	Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer's disease. Brain Research, 1995, 691, 83-91.	2.2	81
28	Expression of NGF and NT3 mRNAs in Hippocampal Interneurons Innervated by the GABAergic Septohippocampal Pathway. Journal of Neuroscience, 1996, 16, 3991-4004.	3.6	80
29	Age-Dependent Effects of Secreted Semaphorins 3A, 3F, and 3E on Developing Hippocampal Axons: In Vitro Effects and Phenotype of Semaphorin 3A (â°/â°) Mice. Molecular and Cellular Neurosciences, 2001, 18, 26-43.	2.2	78
30	Cell-Autonomous Inactivation of the Reelin Pathway Impairs Adult Neurogenesis in the Hippocampus. Journal of Neuroscience, 2012, 32, 12051-12065.	3.6	78
31	Accelerated aging of the GABAergic septohippocampal pathway and decreased hippocampal rhythms in a mouse model of Alzheimer's disease. FASEB Journal, 2012, 26, 4458-4467.	0.5	77
32	Neural ECM molecules in synaptic plasticity, learning, and memory. Progress in Brain Research, 2014, 214, 53-80.	1.4	75
33	Podocalyxin Is a Novel Polysialylated Neural Adhesion Protein with Multiple Roles in Neural Development and Synapse Formation. PLoS ONE, 2010, 5, e12003.	2.5	75
34	Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nature Communications, 2013, 4, 1438.	12.8	74
35	The Long Form of Fas Apoptotic Inhibitory Molecule Is Expressed Specifically in Neurons and Protects Them against Death Receptor-Triggered Apoptosis. Journal of Neuroscience, 2007, 27, 11228-11241.	3.6	73
36	GABAergic innervation of the rat fascia dentata: A novel type of interneuron in the granule cell layer with extensive axonal arborization in the molecular layer. Journal of Comparative Neurology, 1993, 334, 385-396.	1.6	67

#	Article	IF	Citations
37	Nogo-A Expression in the Human Hippocampus in Normal Aging and in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2006, 65, 433-444.	1.7	62
38	BDNF-modulated Spatial Organization of Cajal–Retzius and GABAergic Neurons in the Marginal Zone Plays a Role in the Development of Cortical Organization. Cerebral Cortex, 2006, 16, 487-499.	2.9	61
39	Reelin Induces the Detachment of Postnatal Subventricular Zone Cells and the Expression of the Egr-1 through Erk1/2 Activation. Cerebral Cortex, 2007, 17, 294-303.	2.9	61
40	A Signaling Mechanism Coupling Netrin-1/Deleted in Colorectal Cancer Chemoattraction to SNARE-Mediated Exocytosis in Axonal Growth Cones. Journal of Neuroscience, 2011, 31, 14463-14480.	3.6	59
41	Reelin Controls Progenitor Cell Migration in the Healthy and Pathological Adult Mouse Brain. PLoS ONE, 2011, 6, e20430.	2.5	58
42	Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. Journal of Comparative Neurology, 1993, 333, 435-448.	1.6	56
43	Higher-order aberrations of age-related cataract. Journal of Cataract and Refractive Surgery, 2007, 33, 1442-1446.	1.5	54
44	\hat{l}^2 -amyloid controls altered Reelin expression and processing in Alzheimer's disease. Neurobiology of Disease, 2010, 37, 682-691.	4.4	53
45	Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells. Cerebral Cortex, 2016, 26, 4282-4298.	2.9	53
46	Age-dependent Spontaneous Hyperexcitability and Impairment of GABAergic Function in the Hippocampus of Mice Lacking trkB. Cerebral Cortex, 2006, 16, 47-63.	2.9	51
47	Expression patterns of MLC1 protein in the central and peripheral nervous systems. Neurobiology of Disease, 2007, 26, 532-545.	4.4	48
48	Lack of TrkB and TrkC signaling alters the synaptogenesis and maturation of mossy fiber terminals in the hippocampus. Cell and Tissue Research, 2005, 319, 349-358.	2.9	46
49	A Semaphorin 3A Inhibitor Blocks Axonal Chemorepulsion and Enhances Axon Regeneration. Chemistry and Biology, 2009, 16, 691-701.	6.0	46
50	Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. Journal of Neurochemistry, 2004, 90, 883-893.	3.9	45
51	The GABAergic Septohippocampal Pathway Is Directly Involved in Internal Processes Related to Operant Reward Learning. Cerebral Cortex, 2014, 24, 2093-2107.	2.9	45
52	Developmental analysis of Lingoâ€1/Lern1 protein expression in the mouse brain: Interaction of its intracellular domain with Myt1l. Developmental Neurobiology, 2008, 68, 521-541.	3.0	44
53	GSK3 \hat{I}^2 Is Involved in the Relief of Mitochondria Pausing in a Tau-Dependent Manner. PLoS ONE, 2011, 6, e27686.	2.5	44
54	Reelin and mDab1 regulate the development of hippocampal connections. Molecular and Cellular Neurosciences, 2007, 36, 158-173.	2.2	43

#	Article	IF	Citations
55	Thalamic and Basal Forebrain Afferents Modulate the Development of Parvalbumin and Calbindin D28k Immunoreactivity in the Barrel Cortex of the Rat. European Journal of Neuroscience, 1996, 8, 1522-1534.	2.6	42
56	Somatic Signature of Brain-Specific Single Nucleotide Variations in Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1357-1382.	2.6	38
57	Regeneration of lesioned entorhinoâ€hippocampal axons in vitro by combined degradation of inhibitory proteoglycans and blockade of Nogoâ€66/NgR signaling. FASEB Journal, 2006, 20, 491-493.	0.5	37
58	Cholesterol Depletion Regulates Axonal Growth and Enhances Central and Peripheral Nerve Regeneration. Frontiers in Cellular Neuroscience, 2019, 13, 40.	3.7	37
59	Tau Isoform with Three Microtubule Binding Domains is a Marker of New Axons Generated from the Subgranular Zone in the Hippocampal Dentate Gyrus: Implications for Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 921-930.	2.6	35
60	Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Frontiers in Cellular Neuroscience, 2016, 10, 138.	3.7	33
61	NCAM2 Regulates Dendritic and Axonal Differentiation through the Cytoskeletal Proteins MAP2 and 14-3-3. Cerebral Cortex, 2020, 30, 3781-3799.	2.9	33
62	Chandelier cells in the hippocampal formation of the rat: The entorhinal area and subicular complex. Journal of Comparative Neurology, 1993, 337, 151-167.	1.6	32
63	Bclâ€2 overexpression delays caspaseâ€3 activation and rescues cerebellar degeneration in prionâ€deficient mice that overexpress aminoâ€terminally truncated prion. FASEB Journal, 2007, 21, 3107-3117.	0.5	32
64	Pattern of expression of the podocalyxin gene in the mouse brain during development. Gene Expression Patterns, 2005, 5, 349-354.	0.8	31
65	Cajal–Retzius cells fail to trigger the developmental expression of the Clâ^'extruding co-transporter KCC2. Brain Research, 2008, 1239, 85-91.	2.2	31
66	The GABAergic septohippocampal pathway in control and reeler mice: target specificity and termination onto reelin-expressing interneurons. Molecular and Cellular Neurosciences, 2004, 25, 679-691.	2.2	30
67	The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. Neurobiology of Aging, 2017, 49, 40-51.	3.1	30
68	Blockade of the SNARE Protein Syntaxin 1 Inhibits Glioblastoma Tumor Growth. PLoS ONE, 2015, 10, e0119707.	2.5	30
69	Role of class 3 semaphorins in the development and maturation of the septohippocampal pathway. Hippocampus, 2005, 15, 184-202.	1.9	29
70	Cell Proliferation in the Adult Hippocampal Formation of Rodents and its Modulation by Entorhinal and Fimbria–Fornix Afferents. Cerebral Cortex, 2006, 16, 301-312.	2.9	29
71	The CREB/CREM Transcription Factors Negatively Regulate Early Synaptogenesis and Spontaneous Network Activity. Journal of Neuroscience, 2009, 29, 328-333.	3.6	29
72	Implementing multiple forest management in Brazil nut-rich community forests: Effects of logging on natural regeneration and forest disturbance. Forest Ecology and Management, 2012, 268, 92-102.	3.2	29

#	Article	IF	Citations
73	ApoER2 processing by presenilinâ€1 modulates reelin expression. FASEB Journal, 2014, 28, 1543-1554.	0.5	29
74	NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity. Journal of Alzheimer's Disease, 2018, 65, 1469-1483.	2.6	29
75	NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nature Communications, 2018, 9, 2330.	12.8	29
76	PrP(106-126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrPc. FEBS Letters, 2005, 579, 4099-4106.	2.8	28
77	Signalling effect of NIR pulsed lasers on axonal growth. Journal of Neuroscience Methods, 2010, 186, 196-201.	2.5	28
78	Developmental Expression of the Oligodendrocyte Myelin Glycoprotein in the Mouse Telencephalon. Cerebral Cortex, 2010, 20, 1769-1779.	2.9	28
79	Regenerating cortical connections in a dish: the entorhino-hippocampal organotypic slice co-culture as tool for pharmacological screening of molecules promoting axon regeneration. Nature Protocols, 2010, 5, 217-226.	12.0	27
80	Additional mechanisms conferring genetic susceptibility to Alzheimer $ ilde{A}$ \$\pi_a,\pi_a,\psi\$ disease. Frontiers in Cellular Neuroscience, 2015, 9, 138.	3.7	27
81	Syntaxin 1 is required for DCC/Netrinâ€1â€dependent chemoattraction of migrating neurons from the lower rhombic lip. European Journal of Neuroscience, 2012, 36, 3152-3164.	2.6	26
82	Hypoxia and P1 receptor activation regulate the high-affinity concentrative adenosine transporter CNT2Âin differentiated neuronal PC12 cells. Biochemical Journal, 2013, 454, 437-445.	3.7	26
83	Regulation of Patterned Dynamics of Local Exocytosis in Growth Cones by Netrin-1. Journal of Neuroscience, 2015, 35, 5156-5170.	3.6	26
84	Netrin1 exerts a chemorepulsive effect on migrating cerebellar interneurons in a Dcc-independent way. Molecular and Cellular Neurosciences, 2006, 33, 389-400.	2.2	25
85	The diverse roles and multiple forms of focal adhesion kinase in brain. European Journal of Neuroscience, 2014, 40, 3573-3590.	2.6	25
86	The Non-Canonical Wnt/PKC Pathway Regulates Mitochondrial Dynamics through Degradation of the Arm-Like Domain-Containing Protein Alex3. PLoS ONE, 2013, 8, e67773.	2.5	25
87	Parvalbumin-immunoreactive neurons in the cerebral cortex of the lizardPodarcis hispanica. Brain Research, 1991, 547, 339-343.	2.2	24
88	Regional variability and postsynaptic targets of chandelier cells in the hippocampal formation of the rat. Journal of Comparative Neurology, 1996, 376, 28-44.	1.6	24
89	The Mixture of "Ecstasy―and Its Metabolites Impairs Mitochondrial Fusion/Fission Equilibrium and Trafficking in Hippocampal Neurons, at In Vivo Relevant Concentrations. Toxicological Sciences, 2014, 139, 407-420.	3.1	24
90	Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties. Molecules, 2016, 21, 23.	3.8	24

#	Article	IF	CITATIONS
91	NP1 Regulates Neuronal Activity-Dependent Accumulation of BAX in Mitochondria and Mitochondrial Dynamics. Journal of Neuroscience, 2012, 32, 1453-1466.	3.6	23
92	Involvement of Cajal-Retzius cells in robust and layer-specific regeneration of the entorhino-hippocampal pathways. European Journal of Neuroscience, 2002, 15, 1881-1890.	2.6	22
93	Expression of Semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve. Molecular and Cellular Neurosciences, 2012, 49, 54-67.	2.2	22
94	Coordinated functions of Netrin-1 and Class 3 secreted Semaphorins in the guidance of reciprocal septohippocampal connections. Molecular and Cellular Neurosciences, 2004, 26, 24-33.	2.2	19
95	Transient Downregulation of Dab1 Protein Levels during Development Leads to Behavioral and Structural Deficits: Relevance for Psychiatric Disorders. Neuropsychopharmacology, 2014, 39, 556-568.	5.4	19
96	Hydrogen/Deuterium Exchange-Protected Oligomers Populated during A \hat{l}^2 Fibril Formation Correlate with Neuronal Cell Death. ACS Chemical Biology, 2014, 9, 2678-2685.	3.4	19
97	MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. Archives of Toxicology, 2014, 88, 1561-1572.	4.2	18
98	New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation. Scientific Reports, 2018, 8, 1381.	3.3	18
99	The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. International Journal of Molecular Sciences, 2021, 22, 10021.	4.1	18
100	Regulation of neural migration by the CREB/CREM transcription factors and altered Dab1 levels in CREB/CREM mutants. Molecular and Cellular Neurosciences, 2008, 39, 519-528.	2.2	17
101	FAIM-L regulation of XIAP degradation modulates Synaptic Long-Term Depression and Axon Degeneration. Scientific Reports, 2016, 6, 35775.	3.3	17
102	Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13680-13689.	7.1	17
103	Differential accumulation of Tau phosphorylated at residues Thr231, Ser262 and Thr205 in hippocampal interneurons and its modulation by Tau mutations (VLW) and amyloid- \hat{l}^2 peptide. Neurobiology of Disease, 2019, 125, 232-244.	4.4	17
104	SNARE complex in axonal guidance and neuroregeneration. Neural Regeneration Research, 2018, 13, 386.	3.0	17
105	Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cellular and Molecular Life Sciences, 2016, 73, 1515-1528.	5.4	16
106	Semaphorin 6C leads to GSK-3-dependent growth cone collapse and redistributes after entorhino-hippocampal axotomy. Molecular and Cellular Neurosciences, 2006, 33, 321-334.	2.2	15
107	Efficacy and tolerability of a combined moxifloxacin/dexamethasone formulation for topical prophylaxis and reduction of inflammation in phacoemulsification: a comparative, double masked clinical trial. Current Medical Research and Opinion, 2007, 23, 3123-3130.	1.9	14
108	Neurites regrowth of cortical neurons by GSK3 \hat{i}^2 inhibition independently of Nogo receptor 1. Journal of Neurochemistry, 2010, 113, 1644-1658.	3.9	14

#	Article	IF	Citations
109	SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Developmental Neurobiology, 2017, 77, 963-974.	3.0	14
110	Fibrillar prion peptide PrP(106–126) treatment induces Dab1 phosphorylation and impairs APP processing and Aβ production in cortical neurons. Neurobiology of Disease, 2008, 30, 243-254.	4.4	13
111	The Death Receptor Antagonist FLIP-L Interacts with Trk and Is Necessary for Neurite Outgrowth Induced by Neurotrophins. Journal of Neuroscience, 2010, 30, 6094-6105.	3.6	13
112	Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord. Frontiers in Cellular Neuroscience, 2016, 10, 47.	3.7	12
113	A collection of cDNAs enriched in upper cortical layers of the embryonic mouse brain. Molecular Brain Research, 2004, 122, 133-150.	2.3	10
114	A conserved role for Syntaxin-1 in pre- and post-commissural midline axonal guidance in fly, chick, and mouse. PLoS Genetics, 2018, 14, e1007432.	3.5	10
115	Expression pattern of ACK1 tyrosine kinase during brain development in the mouse. Gene Expression Patterns, 2006, 6, 886-892.	0.8	7
116	Two Cases of Cosmetic Iris Implant Explantation Secondary to Uveitis, Glaucoma, and Corneal Decompensation. JAMA Ophthalmology, 2012, 130, 787-9.	2.4	7
117	Validation of Suspected Somatic Single Nucleotide Variations in the Brain of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2017, 56, 977-990.	2.6	7
118	Bcl-2 overexpression does not promote axonal regeneration of the entorhino-hippocampal connections in vitro after axotomy. Brain Research, 2004, 1020, 204-209.	2.2	6
119	Peptoids bearing tertiary amino residues in the n-alkyl side chains: synthesis of a potent inhibitor of Semaphorin 3A. Tetrahedron, 2010, 66, 2444-2454.	1.9	6
120	Variations in brain DNA. Frontiers in Aging Neuroscience, 2014, 6, 323.	3.4	6
121	Synthesis of Asymmetric Monomethine Cyanine Dyes with Redâ€Shifted Optical Properties. Journal of Heterocyclic Chemistry, 2015, 52, 180-184.	2.6	6
122	"Turn on―fluorescence response of monomethine cyanines caused by noncovalent binding to ct-DNA. Dyes and Pigments, 2017, 145, 202-207.	3.7	6
123	New Partners Identified by Mass Spectrometry Assay Reveal Functions of NCAM2 in Neural Cytoskeleton Organization. International Journal of Molecular Sciences, 2021, 22, 7404.	4.1	6
124	Similarities and Differences between Exome Sequences Found in a Variety of Tissues from the Same Individual. PLoS ONE, 2014, 9, e101412.	2.5	6
125	Semaphorin 3C is not required for the establishment and target specificity of the GABAergic septohippocampal pathway <i>in vitro</i> . European Journal of Neuroscience, 2011, 34, 1923-1933.	2.6	5
126	Influence of distant femtosecond laser pulses on growth cone fillopodia. Cytotechnology, 2008, 58, 103-111.	1.6	4

#	Article	IF	CITATIONS
127	Identification of novel Ack1-interacting proteins and Ack1 phosphorylated sites in mouse brain by mass spectrometry. Oncotarget, 2017, 8, 101146-101157.	1.8	3
128	New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1388-1394.	2.4	2
129	Ultra-short pulses to signal neuronal growth cone machinery. , 2007, , .		O
130	Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. European Journal of Neuroscience, 2013, 38, 2338-2338.	2.6	0
131	ERK1/2 Mediates EGF-Dependent Kv1.3 Endocytosis. Biophysical Journal, 2017, 112, 251a-252a.	0.5	0